

c=1

Overview

Highly expressive GNNs becomes a hot topic:

- Node Identifier, Random Feature (Subgraph counts, RNI, LE)
- Subgraph-Enhanced GNNs (GNN-AK, NestedGNN, ESAN, ...)
- Higher Order GNNs (PPGN, K-IGN, K-GNN, TokenGT ...)
- Others (random-walk, individualization, drop node, ...)

Should we chase expressivity?

How to study the impact of expressivity systematically? We need a **practical**, **progressively** expressive GNN!

Contribution: a highly expressive GNN with desired properties:

- Practical Scales significantly better than k-WL
- Theoretically Powerful Retains theoretical connection to k-WL
- Progressively Expressive Fine-grained "ruler" of expressivity
- New SOTA Achieves SOTA on ZINC

Impractical for k>3! $O(kn^{k+1})$ for 1 step

A Practical, Progressively-Expressive GNN

Lingxiao Zhao¹, Louis Hartel², Neil Shah³, Leman Akoglu¹

¹Carnegie Mellon University

²RWTH Aachen University

³Snap Inc.

LZK	
IAE	Test MAE
9 ± 0.0071	0.2345 ± 0.0131
3 ± 0.0060	0.2252 ± 0.0030
5 ± 0.0052	0.1636 ± 0.0052
3 ± 0.0051	0.1447 ± 0.0013
4 ± 0.0093	0.0843 ± 0.0048
5 ± 0.0061	0.0747 ± 0.0022
1 ± 0.0043	0.0732 ± 0.0037
$\theta \pm 0.0094$	0.0824 ± 0.0056
$) \pm 0.0157$	0.0950 ± 0.0102
3 ± 0.0102	0.2948 ± 0.0210
3 ± 0.0078	0.1391 ± 0.0102
9 ± 0.0033	0.0836 ± 0.0010
9 ± 0.0056	0.0750 ± 0.0027
7 ± 0.0050	0.0737 ± 0.0006
1 ± 0.0047	0.0784 ± 0.0043
1 ± 0.0076	0.1722 ± 0.0086
1 ± 0.0066	0.0869 ± 0.0026
1 ± 0.0097	0.0920 ± 0.0054
20 c=1	•
00 - c=2	/
C=3	/ / /
80	' / /
60	/
40	
	A A
20	

Method	EXP (ACC)	SR25	Counting Substructures (MAE)			
		(ACC)	Triangle	Tailed Tri.	Star	4-Cycle
GCN	50%	6.67%	0.4186	0.3248	0.1798	0.2822
GIN	50%	6.67%	0.3569	0.2373	0.0224	0.2185
PNA*	50%	6.67%	0.3532	0.2648	0.1278	0.2430
PPGN	100%	6.67%	0.0089	0.0096	0.0148	0.0090
GIN-AK ⁺	100%	6.67%	0.0123	0.0112	0.0150	0.0126
PNA*-AK ⁺	100%	6.67%	0.0118	0.0138	0.0166	0.0132
$(k,c)(\leq)$	100%	100%	0.0073	0.0075	0.0134	0.0075
	$(\geq 3, \geq 2)$	$(\geq 4, \geq 1)$	(3, 2)	(4, 1)	(3, 2)	(4, 1)

k	С	Train loss	Val. MAE	Test MAE
2	1	0.0376 ± 0.0005	0.0387 ± 0.0007	0.0389 ± 0.0008
3	1	0.0308 ± 0.0010	0.0386 ± 0.0017	0.0379 ± 0.0010
4	1	0.0338 ± 0.0003	0.0371 ± 0.0005	0.0370 ± 0.0006
5	1	0.0299 ± 0.0017	0.0343 ± 0.0008	0.0341 ± 0.0009
6	1	0.0226 ± 0.0004	0.0296 ± 0.0007	0.0293 ± 0.0007
7	1	0.0208 ± 0.0005	0.0289 ± 0.0007	0.0269 ± 0.0003
2	2	0.0367 ± 0.0007	0.0398 ± 0.0004	0.0398 ± 0.0004
3	2	0.0282 ± 0.0013	0.0358 ± 0.0009	0.0356 ± 0.0007
4	2	0.0219 ± 0.0004	0.0280 ± 0.0008	0.0278 ± 0.0008
5	2	0.0175 ± 0.0003	0.0267 ± 0.0005	0.0251 ± 0.0006
3	3	0.0391 ± 0.0107	0.0428 ± 0.0057	0.0425 ± 0.0052
4	3	0.0219 ± 0.0011	0.0301 ± 0.0010	0.0286 ± 0.0004
GINE	(L=4)	0.0507 ± 0.0014	0.0478 ± 0.0003	0.0479 ± 0.0004
GINE	(L=6)	0.0440 ± 0.0009	0.0440 ± 0.0009	0.0451 ± 0.0009