# A Practical, Progressively-Expressive GNN

Lingxiao Zhao, Louis Härtel, Neil Shah, Leman Akoglu

## Is Expressivity Really Necessary?

- GNN with higher expressivity =>
  - Closer to universal function approximator
  - Higher computational cost
  - Potentially worse generalization
- How to study the impact of expressivity?
  - We need a model that is
    - Practical, implementable
    - With tunable, progressive expressivity

# **Improving Expressivity of GNN**

- Random Node Initialization
  - Problem: generalization is not clear, randomness
- Subgraph Enhanced GNNs
  - Problem: expressivity is limited by 3-WL [Frasca et al. 22]
- Higher-Order GNNs
  - Linear Invariant Graph Network (k-IGN)
  - k-WL Inspired GNNs
  - Problem: <u>Not practical with k>3</u>

How to improve higher-order GNNs to have deserved properties?

#### k-WL

- Working on k-tuples  $\vec{v} = (v_1, v_2, ..., v_k)$  with color  $wl_k^{(t)}(\vec{v})$
- Initial color (t=0): atomic type

 $\circ \boldsymbol{wl}_{k}^{(0)}(\overrightarrow{\boldsymbol{v}}) = \boldsymbol{wl}_{k}^{(0)}(\overrightarrow{\boldsymbol{u}}) \text{lff} \overrightarrow{\boldsymbol{v}} \mapsto \overrightarrow{\boldsymbol{u}} \text{ is isomorphism of } G[\overrightarrow{\boldsymbol{v}}] \& H[\overrightarrow{\boldsymbol{u}}]$ 

• t-th iteration:

• Let  $\vec{v}[x/i] := (v_1, ..., v_{i-1}, x, v_{i+1}, ..., v_k)$ 

$$\circ \boldsymbol{w} \boldsymbol{l}_{k}^{(t+1)}(G, \overrightarrow{\boldsymbol{v}}) = \text{HASH}\Big(\boldsymbol{w} \boldsymbol{l}_{k}^{(t)}(G, \overrightarrow{\boldsymbol{v}}),$$

| - | 11   | 12  | 13 | 14 | 15 | 16 |  |
|---|------|-----|----|----|----|----|--|
|   | -21- | -22 | 23 | 24 | 25 | 26 |  |
|   | 31   | 32  | 33 | 34 | 35 | 36 |  |
|   | 41   | 42  | 43 | 44 | 45 | 46 |  |
|   | 51   | 52  | 53 | 54 | 55 | 56 |  |
|   | 61   | 62  | 63 | 64 | 65 | 66 |  |

$$\{\!\!\{\boldsymbol{w}\boldsymbol{l}_{k}^{(t)}(G, \overrightarrow{\boldsymbol{v}}[x/1]) \middle| x \in V(G)\}\!\!\}, \dots, \\\{\!\!\{\boldsymbol{w}\boldsymbol{l}_{k}^{(t)}(G, \overrightarrow{\boldsymbol{v}}[x/k]) \middle| x \in V(G)\}\!\!\}\right\}$$

### **Computational Bottleneck**

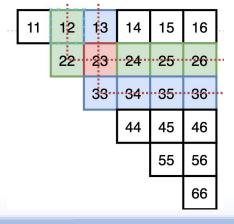
- k-tuples [super-nodes]
  - **n^k**
- Connections among k-tuples [super-edges]

- n\*k for each k-tuple
- Can we reduce both parts?

# **1 - Tuples to MultiSets** (Usuper-nodes)

Removing ordering information  $\vec{v} = (v_1, v_2, ..., v_k) \longrightarrow \tilde{v} = \{\!\!\{v_1, v_2, ..., v_k\}\!\!\}$ 

- k-MultisetWL
  - Initial color: isomorphism type 0
  - t-th iteration color updating:



$$\boldsymbol{mwl}_{k}^{(t+1)}(G, \tilde{\boldsymbol{v}}) = \mathrm{HASH}\Big(\boldsymbol{mwl}_{k}^{(t)}(G, \tilde{\boldsymbol{v}}),$$

 $\left\{ \left\{ \left\{ \boldsymbol{mwl}_{k}^{(t)}(G, \tilde{\boldsymbol{v}}[x/1]) \middle| x \in V(G) \right\} \right\}, \ldots, \right\}$  $\{\!\!\{\boldsymbol{mwl}_k^{(t)}(G, \tilde{\boldsymbol{v}}[x/k]) \middle| x \in V(G)\}\!\}\}$ 

# **1 - Tuples to Multisets** (Usuper-nodes)

- Expressivity of k-MultisetWL
  - Thm. 1: Upper-bounded by k-WL
  - Thm. 2: No less powerful than (k-1)-WL
  - Thm. 3:

Same expressivity as *doubly bijective k-pebble game* (k-WL ⇔ bijective k-pebble game)

**Carnegie Mellon University** 

Conjecture: (hard to find failure case)
 k-WL ⇔ k-MultisetWL

#### **2 - Multisets to Sets** (\u00ed super-nodes &-edges)

• Removing repeated elements

•  $\tilde{\boldsymbol{v}} = \{\!\!\{v_1, v_2, ..., v_k\}\!\!\} \longrightarrow \hat{\boldsymbol{v}} = \{\hat{v}_1, ..., \hat{v}_m\}\!\}$ 

• Set  $\hat{\boldsymbol{v}}$  can has less elements,  $1 \leq m \leq k$ 

• k(≤)-SetWL

 $swl_{k}^{(t+1)}(G, \hat{v}) = \text{HASH}\left(swl_{k}^{(t)}(G, \hat{v}), \{\!\!\{swl_{k}^{(t)}(G, \hat{v} \cup \{x\}) \mid x \in V(G) \setminus \hat{v}\}\!\!\}, \{\!\!\{swl_{k}^{(t)}(G, \hat{v} \setminus x) \mid x \in \hat{v}\}\!\!\}, \\ \left\{\!\!\{\{\!\!\{swl_{k}^{(t)}(G, \hat{v}[x/o_{G}^{-1}(\hat{v}, 1)]) \mid x \in V(G) \setminus \hat{v}\}\!\!\}, ..., \{\!\!\{swl_{k}^{(t)}(G, \hat{v}[x/o_{G}^{-1}(\hat{v}, m)]) \mid x \in V(G) \setminus \hat{v}\}\!\!\}\right\}\!\!\right\}\right)$ 

**Carnegie Mellon University** 

 Expressivity: Thm. 4: Upper-bounded by k-MultisetWL

### **3 - To Sets with Connectivity** (*L*super-nodes &-edges)

- Further reduce super-nodes
  - Only consider  $\hat{v}$  with subgraph  $G[\hat{v}]$  having  $\leq c$ connected components
  - (k, c)(≤)-SetWL
  - Expressivity: Thm. 5
    - $(k,c)(\leq)$ -SetWL has less expressivity than  $(k+1,c)(\leq)$ -SetWL
    - $(k,c)(\leq)$ -SetWL has less expressivity than  $(k,c+1)(\leq)$ -SetWL

**Carnegie Mellon University** 

- $(k,k)(\leq)$ -SetWL  $\Leftrightarrow k(\leq)$ -SetWL
- Fine-grained, progressively expressive

Note: [SpeqNets, Morris et al. 22] also used the same idea of restricting connected components, concurrently.

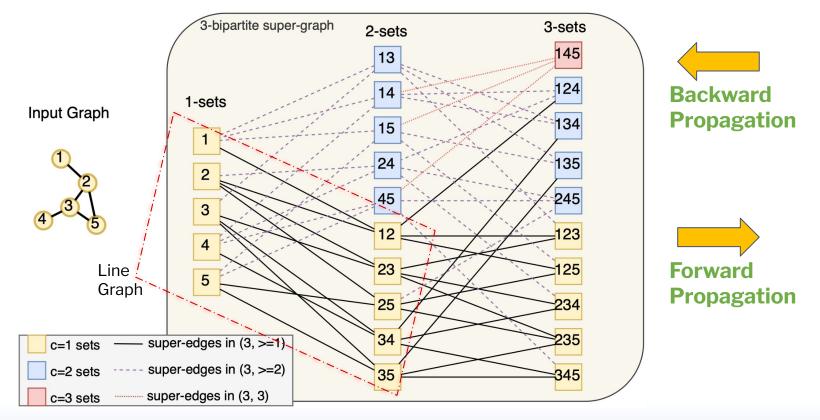
### **4 - K-bipartite Connection** (Usuper-edges)

- Nearby super-nodes of a single m-set  $\hat{\boldsymbol{v}}$  in k( $\leq$ )-SetWL  $\circ$  (m-1)-sets :  $\hat{\boldsymbol{v}} \setminus x$ , for  $x \in \hat{\boldsymbol{v}}$  Define as  $\mathcal{N}_{left}^{G}(\hat{\boldsymbol{v}})$ 

  - (m+1)-sets:  $\hat{\boldsymbol{v}} \cup x$ , for  $x \in V(G) \setminus \hat{\boldsymbol{v}}$  Define as  $\mathcal{N}_{right}^G(\hat{\boldsymbol{v}})$
  - $\hat{\boldsymbol{v}} \cup x \setminus y$ , for  $x \in V(G) \setminus \hat{\boldsymbol{v}}, y \in \hat{\boldsymbol{v}}$ • m-sets:
- Connections to m-sets can be safely <u>removed</u>!

 $\boldsymbol{swl}_{k,c}^{(t+\frac{1}{2})}(G, \hat{\boldsymbol{v}}) = \mathrm{HASH}\{\!\!\{\boldsymbol{swl}_{k,c}^{(t)}(G, \hat{\boldsymbol{u}}) \mid \hat{\boldsymbol{u}} \in \mathcal{N}_{\mathrm{right}}^{G}(\hat{\boldsymbol{v}})\}\!\!\} \begin{array}{c} \mathsf{Backward} \\ \mathsf{Propagation} \end{array}$  $\boldsymbol{swl}_{k,c}^{(t+1)}(G, \hat{\boldsymbol{v}}) = \mathrm{HASH}(\boldsymbol{swl}_{k,c}^{(t)}(G, \hat{\boldsymbol{v}}), \ \boldsymbol{swl}_{k,c}^{(t+\frac{1}{2})}(G, \hat{\boldsymbol{v}}),$  $\{\!\!\{\boldsymbol{swl}_{k,c}^{(t)}(G, \hat{\boldsymbol{u}}) \mid \hat{\boldsymbol{u}} \in \mathcal{N}_{left}^{G}(\hat{\boldsymbol{v}})\}\!\!\}, \text{ Propagation}$  $\{\!\!\{\boldsymbol{swl}_{k}^{(t+\frac{1}{2})}(G, \hat{\boldsymbol{u}}) \mid \hat{\boldsymbol{u}} \in \mathcal{N}_{\text{left}}^{G}(\hat{\boldsymbol{v}})\}\!\!\}$ 

#### **Visualizing K-bipartite Super-graph**



# $(k,c)(\leq)$ -SetWL to $(k,c)(\leq)$ -SetGNN

- "Color" Initialization
  - Each m-set should be initialized with the isomorphism type of its induced subgraph.
  - Use a base 1-WL GNN to encode isomorphism type  $h^{(0)}(\hat{v}) = \text{BaseGNN}(G[\hat{v}])$
- Message passing among k-bipartite super-graph

# (k,c)(≤)-SetGNN\*

Bidirectional <u>Sequential</u> Message Passing

$$m = k - 1 \text{ to } 1, \forall m \text{-set } \hat{\boldsymbol{v}}, h^{(t + \frac{1}{2})}(\hat{\boldsymbol{v}}) = \text{MLP}_{m,1}^{(t)} \left( h^{(t)}(\hat{\boldsymbol{v}}), \sum_{\hat{\boldsymbol{u}} \in \mathcal{N}_{\text{right}}^G(\hat{\boldsymbol{v}})} \text{MLP}_{m,2}^{(t)}(h^{(t + \frac{1}{2})}(\hat{\boldsymbol{u}})) \right) \text{ Backward}$$

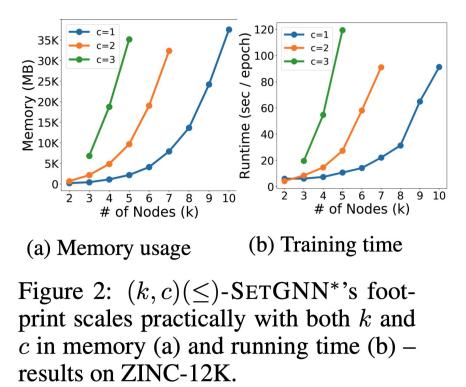
$$m = 2 \text{ to } k, \forall m \text{-set } \hat{\boldsymbol{v}}, h^{(t+1)}(\hat{\boldsymbol{v}}) = \text{MLP}_{m,1}^{(t+\frac{1}{2})} \left( h^{(t+\frac{1}{2})}(\hat{\boldsymbol{v}}), \sum_{\hat{\boldsymbol{u}} \in \mathcal{N}_{\text{left}}^G(\hat{\boldsymbol{v}})} \text{MLP}_{m,2}^{(t+\frac{1}{2})}(h^{(t+1)}(\hat{\boldsymbol{u}})) \right) \text{ Forward}$$

- Expressivity:
  - Thm. 6:  $(k,c)(\leq)$ -SetGNN  $\Leftrightarrow$   $(k,c)(\leq)$ -SetWL
  - Thm. 7:
    t-layer (k,c)(≤)-SetGNN\* is more expressive than
    t-layer (k,c)(≤)-SetGNN

#### **Experimental Results**

Table 4:  $(k, c)(\leq)$ -SETGNN<sup>\*</sup> performances on ZINC-12K by varying (k, c). Test MAE at lowest Val. MAE, and lowest <u>Test MAE</u>.

| k  | c | Train loss          | Val. MAE            | Test MAE            |
|----|---|---------------------|---------------------|---------------------|
| 2  | 1 | $0.1381 \pm 0.0240$ | $0.2429 \pm 0.0071$ | $0.2345 \pm 0.0131$ |
| 3  | 1 | $0.1172 \pm 0.0063$ | $0.2298 \pm 0.0060$ | $0.2252 \pm 0.0030$ |
| 4  | 1 | $0.0693 \pm 0.0111$ | $0.1645 \pm 0.0052$ | $0.1636 \pm 0.0052$ |
| 5  | 1 | $0.0643 \pm 0.0019$ | $0.1593 \pm 0.0051$ | $0.1447 \pm 0.0013$ |
| 6  | 1 | $0.0519 \pm 0.0064$ | $0.0994 \pm 0.0093$ | $0.0843 \pm 0.0048$ |
| 7  | 1 | $0.0543 \pm 0.0048$ | $0.0965 \pm 0.0061$ | $0.0747 \pm 0.0022$ |
| 8  | 1 | $0.0564 \pm 0.0152$ | $0.0961 \pm 0.0043$ | $0.0732 \pm 0.0037$ |
| 9  | 1 | $0.0817 \pm 0.0274$ | $0.0909 \pm 0.0094$ | $0.0824 \pm 0.0056$ |
| 10 | 1 | $0.0894 \pm 0.0266$ | $0.1060 \pm 0.0157$ | $0.0950 \pm 0.0102$ |
| 2  | 2 | $0.1783 \pm 0.0602$ | $0.2913 \pm 0.0102$ | $0.2948 \pm 0.0210$ |
| 3  | 2 | $0.0640 \pm 0.0072$ | $0.1668 \pm 0.0078$ | $0.1391 \pm 0.0102$ |
| 4  | 2 | $0.0499 \pm 0.0043$ | $0.1029 \pm 0.0033$ | $0.0836 \pm 0.0010$ |
| 5  | 2 | $0.0483 \pm 0.0017$ | $0.0899 \pm 0.0056$ | $0.0750 \pm 0.0027$ |
| 6  | 2 | $0.0530 \pm 0.0064$ | $0.0927 \pm 0.0050$ | $0.0737 \pm 0.0006$ |
| 7  | 2 | $0.0547 \pm 0.0036$ | $0.0984 \pm 0.0047$ | $0.0784 \pm 0.0043$ |
| 3  | 3 | $0.0798 \pm 0.0062$ | $0.1881 \pm 0.0076$ | $0.1722 \pm 0.0086$ |
| 4  | 3 | $0.0565 \pm 0.0059$ | $0.1121 \pm 0.0066$ | $0.0869 \pm 0.0026$ |
| 5  | 3 | $0.0671 \pm 0.0156$ | $0.1091 \pm 0.0097$ | $0.0920 \pm 0.0054$ |
| -  |   |                     |                     |                     |



#### **Summary**

- (k,c)(≤)-SetGNN(\*): a practical and progressively expressive GNN improved from k-WL.
- Code: <a href="https://github.com/LingxiaoShawn/KCSetGNN">https://github.com/LingxiaoShawn/KCSetGNN</a>

# Thank you!



15