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Graph Neural Network
● Architecture: stacking message passing layers  
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Graph Neural Network
● (t-th) Message Passing Layer  
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Graph Neural Network
● (t-th) Message Passing Layer  

Step 1: each neighbor 
sends message out
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Graph Neural Network
● (t-th) Message Passing Layer  

Step 2: the node aggregates information from its 
neighbors, transforms the aggregated information
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Graph Neural Network
● Pool Layer

● Sum or Mean
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Graph Neural Network
● Architecture: stacking message passing layers  

7



Expressiveness & Universality
● MLP is universal function approximator

○ Function space: Functions over Euclidean space
○ Given enough neurons.

● How about GNN?
○ Function space: Functions over graph space 
○ GNN is NOT universal approximator!
○ Universal approximator over graph ⇔ Solving graph 

isomorphism test problem [Chen et al. 19]
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Expressiveness & Universality
● Graph isomorphism test

○ NP-intermediate Problem (if P!= NP)
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Expressiveness & Universality
● Weisfeiler-Lehman Isomorphism Test (1-WL) 

○ t-th iteration

○ Output histogram of colors after T iterations. 
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Expressiveness & Universality
● The expressivity of GNN

○ Upper bounded by 1-WL test [Xu et al. 19]
○ Cannot

■ Find cycles
■ Find triangles
■ Calculate diameter 
■ Distinguish regular graphs
■ …

● Many recent works focus on improving 
expressivity.
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Is Expressivity Really Necessary? 
● GNN with higher expressivity =>

○ Closer to universal function approximator
○ Higher computational cost
○ Potentially worse generalization 

● How to study the impact of expressivity? 
○ We need a model that is

■ Practical, implementable 
■ With tunable, progressive expressivity 



Improving Expressivity of GNN
● Random Node Initialization

○ Problem: generalization is not clear, randomness 
● Subgraph Enhanced GNNs

○ Problem: expressivity is limited by 3-WL [Frasca et al. 22]
● Higher-Order GNNs 

○ Linear Invariant Graph Network (k-IGN)
○ k-WL Inspired GNNs 
○ Problem: Not practical with k>3

How to improve higher-order GNNs 
to have deserved properties?



Background: k-WL
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Background: k-WL
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Computational Bottleneck
● k-tuples [super-nodes]

○ n^k
● Connections among k-tuples [super-edges]

○ n*k for each k-tuple

● Can we reduce both parts?  



1 - Tuples to Multisets   (↓super-nodes &-edges)

Remove ordering information 
• # Super-nodes: 𝑛! → "#!$%

! ratio≈ k!  

• # Super-edges: 𝑘𝑛!#% →≈ 𝑛& "#!$'
!$%



1 - Tuples to Multisets   (↓super-nodes)
● Removing ordering information 

● k-MultisetWL
○ Initial color: isomorphism type
○ t-th iteration color updating: 



1 - Tuples to Multisets   (↓super-nodes &-edges)

● Expressivity of k-MultisetWL
○ Thm. 1: Upper-bounded by k-WL
○ Thm. 2: No less powerful than (k-1)-WL
○ Thm. 3: 

Same expressivity as doubly bijective k-pebble game
(k-WL ⇔ bijective k-pebble game)

○ Conjecture: (hard to find failure case)
k-WL ⇔ k-MultisetWL



2 - Multisets to Sets    (↓super-nodes &edges)

Remove repetitions
• # Super-nodes: !"#$%

# → ∑&'%# !
&

• # Super-edges: 𝑛( !"#$)
#$% → ∑&'(# 𝑖 !

&

Thm. 4: Upper-bounded by k-MultisetWL
• Super-nodes: m-sets with 1≤m≤k
• For each m-set, its neighbors include:

- (m-1)-sets       - (m+1)-sets         - m-sets



2 - Multisets to Sets    (↓super-nodes &edges)

● Removing repeated elements

○ Set    can has less elements, 



3 - To Restricted Sets  (↓super-nodes &edges)
● Further reduce super-nodes

○ Only consider    with subgraph          having ≤ c
connected components

○ Expressivity: Thm. 5
■ (k,c)(≤)-SetWL has less expressivity than (k+1,c)(≤)-SetWL
■ (k,c)(≤)-SetWL has less expressivity than (k,c+1)(≤)-SetWL
■ (k,k)(≤)-SetWL ⇔ k(≤)-SetWL

○ Fine-grained, progressively expressive
Note: [SpeqNets, Morris et al. 22] also used the same idea of restricting connected components, concurrently. 



4 - K-bipartite Connection (↓super-edges)

● Nearby super-nodes of a single m-set     in k(≤)-SetWL
○ (m-1)-sets :                                                   Define as 
○ (m+1)-sets:                                                   Define as
○ m-sets:       

● Connections to m-sets can be safely removed! 
Backward 
Propagation 

Forward 
Propagation 



Visualizing K-bipartite Super-graph
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(k,c)(≤)-SetWL to (k,c)(≤)-SetGNN
● “Color” Initialization 

○ Each m-set should be initialized with the 
isomorphism type of its induced subgraph. 

○ Use a base 1-WL GNN to encode isomorphism type

● Message passing among k-bipartite super-graph  
Backward Propagation 

Forward Propagation 



(k,c)(≤)-SetGNN* 
● Bidirectional Sequential Message Passing

● Expressivity:
○ Thm. 6: (k,c)(≤)-SetGNN ⇔ (k,c)(≤)-SetWL
○ Thm. 7: 

t-layer (k,c)(≤)-SetGNN* is more expressive than t-
layer (k,c)(≤)-SetGNN

Forward 

Backward 



Experimental Results



Summary
● (k,c)(≤)-SetGNN(*): a practical and progressively 

expressive GNN improved from k-WL. 

● Code: https://github.com/LingxiaoShawn/KCSetGNN
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Thank you! 

https://github.com/LingxiaoShawn/KCSetGNN

