
A Practical,
Progressively-Expressive GNN

Lingxiao Zhao, Louis Härtel, Neil Shah, and Leman Akoglu
Carnegie Mellon University

1

Graph Neural Network
● Architecture: stacking message passing layers

2

Graph Neural Network
● (t-th) Message Passing Layer

3

Graph Neural Network
● (t-th) Message Passing Layer

Step 1: each neighbor
sends message out

4

Graph Neural Network
● (t-th) Message Passing Layer

Step 2: the node aggregates information from its
neighbors, transforms the aggregated information

5

Graph Neural Network
● Pool Layer

● Sum or Mean
6

Graph Neural Network
● Architecture: stacking message passing layers

7

Expressiveness & Universality
● MLP is universal function approximator

○ Function space: Functions over Euclidean space
○ Given enough neurons.

● How about GNN?
○ Function space: Functions over graph space
○ GNN is NOT universal approximator!
○ Universal approximator over graph ⇔ Solving graph

isomorphism test problem [Chen et al. 19]

8

Expressiveness & Universality
● Graph isomorphism test

○ NP-intermediate Problem (if P!= NP)

9

Expressiveness & Universality
● Weisfeiler-Lehman Isomorphism Test (1-WL)

○ t-th iteration

○ Output histogram of colors after T iterations.
10

Expressiveness & Universality
● The expressivity of GNN

○ Upper bounded by 1-WL test [Xu et al. 19]
○ Cannot

■ Find cycles
■ Find triangles
■ Calculate diameter
■ Distinguish regular graphs
■ …

● Many recent works focus on improving
expressivity.

11

Is Expressivity Really Necessary?
● GNN with higher expressivity =>

○ Closer to universal function approximator
○ Higher computational cost
○ Potentially worse generalization

● How to study the impact of expressivity?
○ We need a model that is

■ Practical, implementable
■ With tunable, progressive expressivity

Improving Expressivity of GNN
● Random Node Initialization

○ Problem: generalization is not clear, randomness
● Subgraph Enhanced GNNs

○ Problem: expressivity is limited by 3-WL [Frasca et al. 22]
● Higher-Order GNNs

○ Linear Invariant Graph Network (k-IGN)
○ k-WL Inspired GNNs
○ Problem: Not practical with k>3

How to improve higher-order GNNs
to have deserved properties?

Background: k-WL

2 3

, ,1 3 4 3 5 3

, ,2 1 2 4
2 5

2 1 3 5

, ,

1-WL:

k-WL: (k=2)

1-tuples

k-tuples

Background: k-WL

...

...

...

...

... ...

one k-tuple's "neighbors"

Computational Bottleneck
● k-tuples [super-nodes]

○ n^k
● Connections among k-tuples [super-edges]

○ n*k for each k-tuple

● Can we reduce both parts?

1 - Tuples to Multisets (↓super-nodes &-edges)

Remove ordering information
• # Super-nodes: 𝑛! → "#!$%

! ratio≈ k!

• # Super-edges: 𝑘𝑛!#% →≈ 𝑛& "#!$'
!$%

1 - Tuples to Multisets (↓super-nodes)
● Removing ordering information

● k-MultisetWL
○ Initial color: isomorphism type
○ t-th iteration color updating:

1 - Tuples to Multisets (↓super-nodes &-edges)

● Expressivity of k-MultisetWL
○ Thm. 1: Upper-bounded by k-WL
○ Thm. 2: No less powerful than (k-1)-WL
○ Thm. 3:

Same expressivity as doubly bijective k-pebble game
(k-WL ⇔ bijective k-pebble game)

○ Conjecture: (hard to find failure case)
k-WL ⇔ k-MultisetWL

2 - Multisets to Sets (↓super-nodes &edges)

Remove repetitions
• # Super-nodes: !"#$%

→ ∑&'%# !
&

• # Super-edges: 𝑛(!"#$)
#$% → ∑&'(# 𝑖 !

&

Thm. 4: Upper-bounded by k-MultisetWL
• Super-nodes: m-sets with 1≤m≤k
• For each m-set, its neighbors include:

- (m-1)-sets - (m+1)-sets - m-sets

2 - Multisets to Sets (↓super-nodes &edges)

● Removing repeated elements

○ Set can has less elements,

3 - To Restricted Sets (↓super-nodes &edges)
● Further reduce super-nodes

○ Only consider with subgraph having ≤ c
connected components

○ Expressivity: Thm. 5
■ (k,c)(≤)-SetWL has less expressivity than (k+1,c)(≤)-SetWL
■ (k,c)(≤)-SetWL has less expressivity than (k,c+1)(≤)-SetWL
■ (k,k)(≤)-SetWL ⇔ k(≤)-SetWL

○ Fine-grained, progressively expressive
Note: [SpeqNets, Morris et al. 22] also used the same idea of restricting connected components, concurrently.

4 - K-bipartite Connection (↓super-edges)

● Nearby super-nodes of a single m-set in k(≤)-SetWL
○ (m-1)-sets : Define as
○ (m+1)-sets: Define as
○ m-sets:

● Connections to m-sets can be safely removed!
Backward
Propagation

Forward
Propagation

Visualizing K-bipartite Super-graph

Backward
Propagation

Forward
Propagation

Line
Graph

(k,c)(≤)-SetWL to (k,c)(≤)-SetGNN
● “Color” Initialization

○ Each m-set should be initialized with the
isomorphism type of its induced subgraph.

○ Use a base 1-WL GNN to encode isomorphism type

● Message passing among k-bipartite super-graph
Backward Propagation

Forward Propagation

(k,c)(≤)-SetGNN*
● Bidirectional Sequential Message Passing

● Expressivity:
○ Thm. 6: (k,c)(≤)-SetGNN ⇔ (k,c)(≤)-SetWL
○ Thm. 7:

t-layer (k,c)(≤)-SetGNN* is more expressive than t-
layer (k,c)(≤)-SetGNN

Forward

Backward

Experimental Results

Summary
● (k,c)(≤)-SetGNN(*): a practical and progressively

expressive GNN improved from k-WL.

● Code: https://github.com/LingxiaoShawn/KCSetGNN

28

Thank you!

https://github.com/LingxiaoShawn/KCSetGNN

