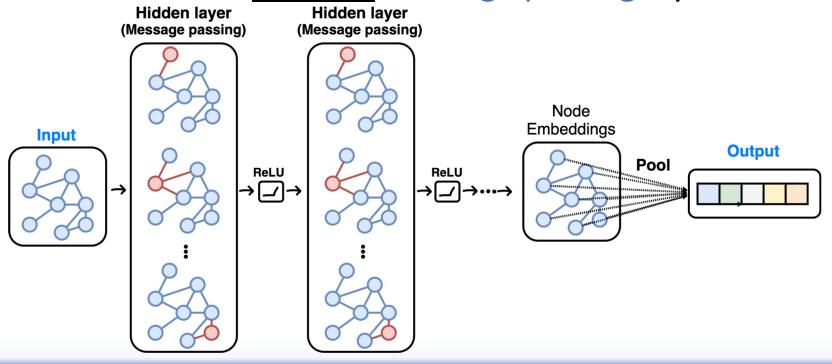
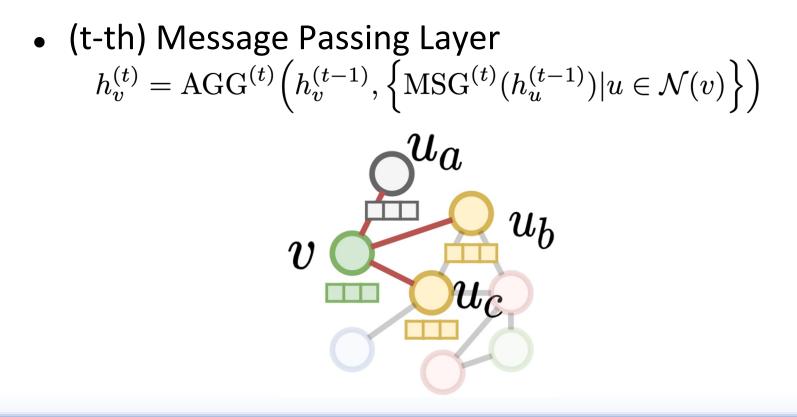
A Practical, Progressively-Expressive GNN

Lingxiao Zhao, Louis Härtel, Neil Shah, and Leman Akoglu Carnegie Mellon University

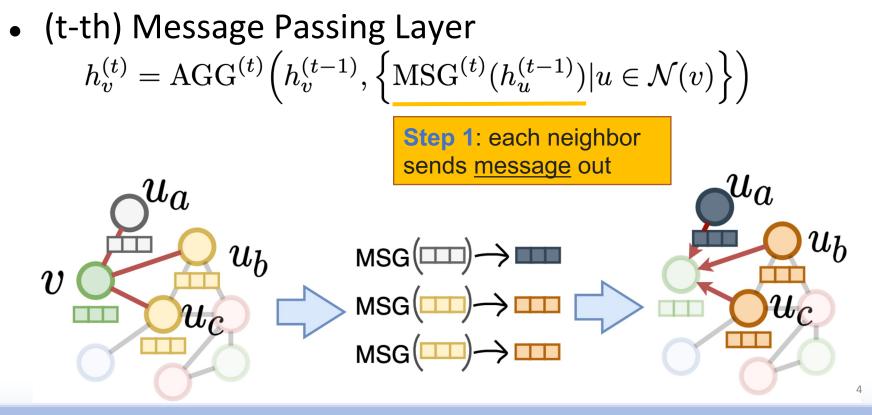
• Architecture: <u>stacking message passing layers</u>



2

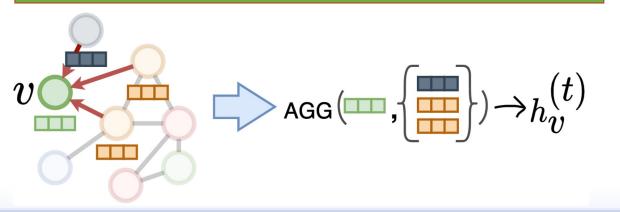


Carnegie Mellon University



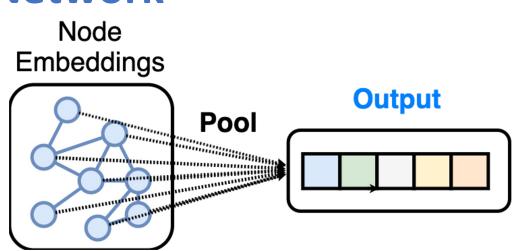
• (t-th) Message Passing Layer $h_v^{(t)} = \operatorname{AGG}^{(t)}\left(h_v^{(t-1)}, \left\{\operatorname{MSG}^{(t)}(h_u^{(t-1)}) | u \in \mathcal{N}(v)\right\}\right)$

Step 2: the node aggregates information from its neighbors, transforms the aggregated information



Carnegie Mellon University

• Pool Layer

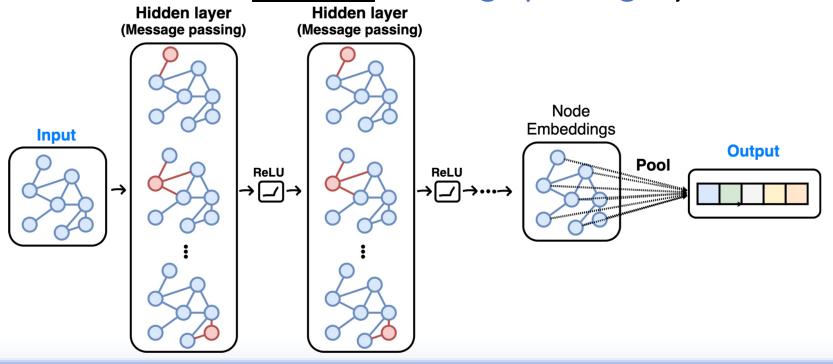


$$h_G = \operatorname{Pool}\left(\{h_u^{(T)} | u \in V_G\}\right)$$

• Sum or Mean

Carnegie Mellon University

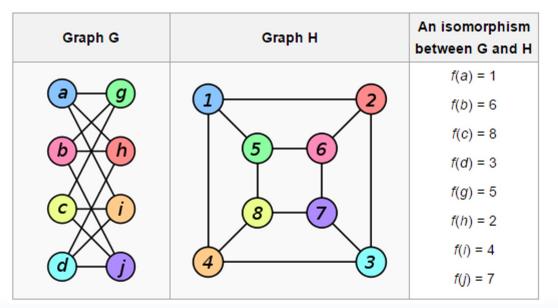
• Architecture: <u>stacking message passing layers</u>



Carnegie Mellon University

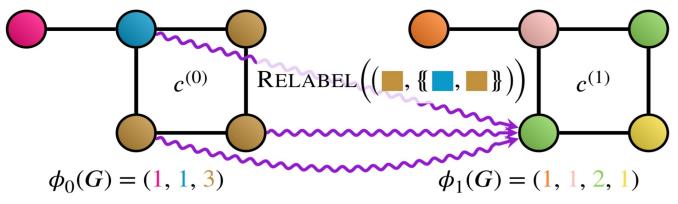
- MLP is universal function approximator
 - Function space: Functions over <u>Euclidean</u> space
 - Given enough neurons.
- How about GNN?
 - Function space: Functions over graph space
 - GNN is **NOT** universal approximator!
 - Output of the second stress of the se

- Graph isomorphism test
 - NP-intermediate Problem (if P!= NP)



Carnegie Mellon University

• Weisfeiler-Lehman Isomorphism Test (1-WL)



- t-th iteration $c^{(t)}(v) = \text{HASH}\left(c^{(t-1)}(v), \left\{c^{(t-1)}(u)|u \in \mathcal{N}_v\right\}\right)$
- Output histogram of colors after T iterations.

- The expressivity of GNN
 - Upper bounded by <u>1-WL test</u> [Xu et al. 19]
 - Cannot
 - Find cycles
 - Find triangles
 - Calculate diameter
 - Distinguish regular graphs

■ ...

• Many recent works focus on improving expressivity.

Is Expressivity Really Necessary?

- GNN with higher expressivity =>
 - Closer to universal function approximator
 - Higher computational cost
 - Potentially worse generalization
- How to study the impact of expressivity?
 - We need a model that is
 - Practical, implementable
 - With tunable, progressive expressivity

Improving Expressivity of GNN

- Random Node Initialization
 - Problem: generalization is not clear, randomness
- Subgraph Enhanced GNNs
 - Problem: expressivity is limited by 3-WL [Frasca et al. 22]
- Higher-Order GNNs
 - Linear Invariant Graph Network (k-IGN)
 - k-WL Inspired GNNs
 - Problem: Not practical with k>3

How to improve higher-order GNNs to have deserved properties?

Background: k-WL

k-W	L: ((k=2)
		in 2-WL

11	12	13	14	15	16
 -21-	-22	23	24	25	-26-
31	32	33	34	35	36
41	42	43	44	45	46
51	52	53	54	55	56
61	62	63	64	65	66

1-tuples

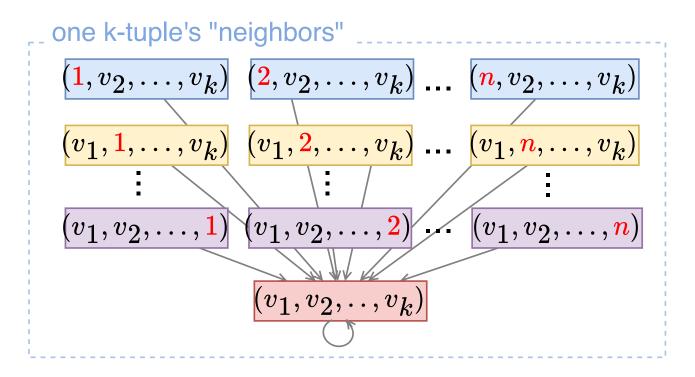
 $c^{(t+1)}(v) \leftarrow \text{HASH}\left(c^{(t)}(v), \{\!\!\{c^{(t)}(u) \mid u \in \mathcal{N}_v\}\!\!\}\right)$ When v = 2When v = 2

k-tuples

Carnegie Mellon University

When u = 2 v = 3

Background: k-WL



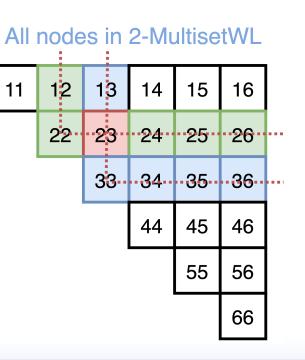
Computational Bottleneck

- k-tuples [super-nodes]
 n^k
- Connections among k-tuples [super-edges]
 n*k for each k-tuple
- Can we reduce both parts?

1 - Tuples to Multisets (Usuper-nodes &-edges)

Remove ordering information

- # Super-nodes: $n^k \rightarrow \binom{n+k-1}{k}$ ratio $\approx k!$
- # Super-edges: $kn^{k+1} \rightarrow \approx n^2 \binom{n+k-3}{k-1}$



1 - Tuples to Multisets (Juper-nodes)

• Removing ordering information

$$\vec{\boldsymbol{v}} = (v_1, v_2, ..., v_k) \longrightarrow \tilde{\boldsymbol{v}} = \{\!\!\{v_1, v_2, ..., v_k\}\!\!\}$$

- k-MultisetWL
 - Initial color: isomorphism type
 - t-th iteration color updating:

$$\begin{split} \boldsymbol{mwl}_{k}^{(t+1)}(G,\tilde{\boldsymbol{v}}) &= \mathrm{HASH}\Big(\boldsymbol{mwl}_{k}^{(t)}(G,\tilde{\boldsymbol{v}}), \\ & \left\{\!\left\{\{\!\boldsymbol{mwl}_{k}^{(t)}(G,\tilde{\boldsymbol{v}}[x/1]) \middle| x \in V(G)\}\!\right\}, \dots, \\ & \left\{\!\!\left\{\!\boldsymbol{mwl}_{k}^{(t)}(G,\tilde{\boldsymbol{v}}[x/k]) \middle| x \in V(G)\}\!\right\}\!\right\}\!\right\}\!\right\} \end{split}$$

1 - Tuples to Multisets (Usuper-nodes &-edges)

- Expressivity of k-MultisetWL
 - Thm. 1: Upper-bounded by k-WL
 - Thm. 2: No less powerful than (k-1)-WL
 - Thm. 3:

Same expressivity as *doubly bijective k-pebble game* (k-WL ⇔ bijective k-pebble game)

• Conjecture: (hard to find failure case)

 $k-WL \Leftrightarrow k-MultisetWL$

2 - Multisets to Sets (Usuper-nodes & edges) All nodes in 2-SetWL **Remove repetitions** • # Super-nodes: $\binom{n+k-1}{k} \rightarrow \sum_{i=1}^{k} \binom{n}{i}$ 1 12 13 14 15 16 • # Super-edges: $n^2 \binom{n+k-3}{k-1} \rightarrow \sum_{i=2}^k i \binom{n}{i}$ 2. 23 24 25 26 3-34-35-36 **Thm. 4**: Upper-bounded by k-MultisetWL 45 46 4 • Super-nodes: m-sets with 1≤m≤k 56 5 • For each m-set, its neighbors include: - (m-1)-sets - (m+1)-sets - m-sets 6

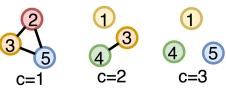
2 - Multisets to Sets (Usuper-nodes & edges)

Removing repeated elements *ṽ* = {{*v*₁, *v*₂, ..., *v_k*} → *v̂* = {*v̂*₁, ..., *v̂*_m}
Set *v̂* can has less elements, 1 ≤ m ≤ k

$$swl_{k}^{(t+1)}(G, \hat{v}) = HASH\left(swl_{k}^{(t)}(G, \hat{v}), \{\!\!\{swl_{k}^{(t)}(G, \hat{v} \cup \{x\}) \mid x \in V(G) \setminus \hat{v}\}\!\!\}, \{\!\!\{swl_{k}^{(t)}(G, \hat{v} \setminus x) \mid x \in \hat{v}\}\!\!\}, \\ \left\{\!\!\{\{\!\!\{swl_{k}^{(t)}(G, \hat{v}[x/o_{G}^{-1}(\hat{v}, 1)]) \mid x \in V(G) \setminus \hat{v}\}\!\!\}, ..., \{\!\!\{swl_{k}^{(t)}(G, \hat{v}[x/o_{G}^{-1}(\hat{v}, m)]) \mid x \in V(G) \setminus \hat{v}\}\!\!\}\right\}\!\right\}\right)$$

3 - To Restricted Sets (June super-nodes & edges)

- Further reduce super-nodes
 - Only consider \hat{v} with subgraph $G[\hat{v}]$ having $\leq c$ connected components



- Expressivity: Thm. 5
 - $(k,c)(\leq)$ -SetWL has less expressivity than $(k+1,c)(\leq)$ -SetWL
 - $(k,c)(\leq)$ -SetWL has less expressivity than $(k,c+1)(\leq)$ -SetWL

Carnegie Mellon University

- $(k,k)(\leq)$ -SetWL \Leftrightarrow $k(\leq)$ -SetWL
- Fine-grained, progressively expressive

Note: [SpeqNets, Morris et al. 22] also used the same idea of restricting connected components, concurrently.

4 - K-bipartite Connection (↓ super-edges)

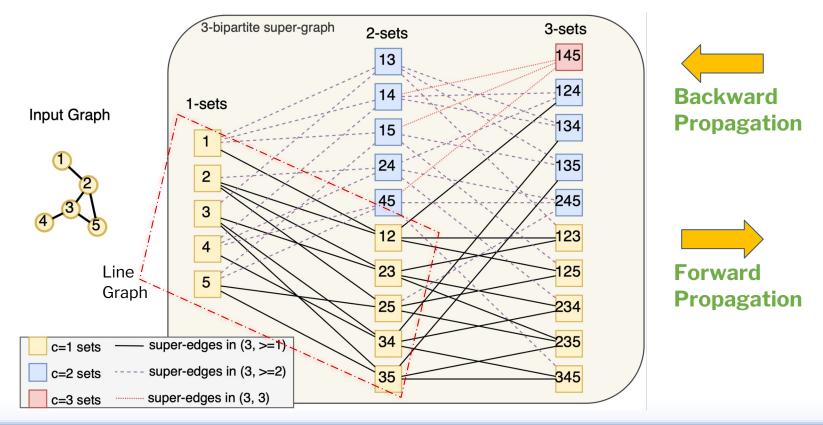
- Nearby super-nodes of a single m-set \hat{v} in k(\leq)-SetWL
 - (m-1)-sets : $\hat{\boldsymbol{v}} \setminus x$, for $x \in \hat{\boldsymbol{v}}$ Define as $\mathcal{N}^G_{\text{left}}(\hat{\boldsymbol{v}})$
 - (m+1)-sets: $\hat{\boldsymbol{v}} \cup x$, for $x \in V(G) \setminus \hat{\boldsymbol{v}}$ Define as $\mathcal{N}^G_{ ext{right}}(\hat{\boldsymbol{v}})$
 - m-sets: $\hat{\boldsymbol{v}} \cup x \setminus y$, for $x \in V(G) \setminus \hat{\boldsymbol{v}}, y \in \hat{\boldsymbol{v}}$
- Connections to m-sets can be safely <u>removed</u>!

$$\begin{split} \boldsymbol{swl}_{k,c}^{(t+\frac{1}{2})}(G, \hat{\boldsymbol{v}}) &= \mathrm{HASH}\{\!\!\{\boldsymbol{swl}_{k,c}^{(t)}(G, \hat{\boldsymbol{u}}) \mid \hat{\boldsymbol{u}} \in \mathcal{N}_{\mathrm{right}}^{G}(\hat{\boldsymbol{v}})\}\!\!\} \\ \boldsymbol{swl}_{k,c}^{(t+1)}(G, \hat{\boldsymbol{v}}) &= \mathrm{HASH}\big(\boldsymbol{swl}_{k,c}^{(t)}(G, \hat{\boldsymbol{v}}), \ \boldsymbol{swl}_{k,c}^{(t+\frac{1}{2})}(G, \hat{\boldsymbol{v}}), \\ &\{\!\!\{\boldsymbol{swl}_{k,c}^{(t)}(G, \hat{\boldsymbol{u}}) \mid \hat{\boldsymbol{u}} \in \mathcal{N}_{\mathrm{left}}^{G}(\hat{\boldsymbol{v}})\}\!\!\}, \\ &\{\!\!\{\boldsymbol{swl}_{k,c}^{(t+\frac{1}{2})}(G, \hat{\boldsymbol{u}}) \mid \hat{\boldsymbol{u}} \in \mathcal{N}_{\mathrm{left}}^{G}(\hat{\boldsymbol{v}})\}\!\!\}, \end{split}$$

Backward Propagation

Forward Propagation

Visualizing K-bipartite Super-graph



(k,c)(≤)-SetWL to (k,c)(≤)-SetGNN

- "Color" Initialization
 - Each m-set should be initialized with the isomorphism type of its induced subgraph.
 - Use a base 1-WL GNN to encode isomorphism type $h^{(0)}(\hat{v}) = \text{BaseGNN}(G[\hat{v}])$
- Message passing among k-bipartite super-graph

 $h^{(t+\frac{1}{2})}(\hat{v}) = \sum_{\hat{u} \in \mathcal{N}_{\text{right}}^{G}(\hat{v})} \text{MLP}^{(t+\frac{1}{2})}(h^{(t)}(\hat{u})) \text{ Backward Propagation}$ $h^{(t+1)}(\hat{v}) = \text{MLP}^{(t)}(h^{(t)}(\hat{v}), h^{(t+\frac{1}{2})}(\hat{v}), \sum \text{MLP}^{(t)}(h^{(t)}(\hat{u})), \sum \text{MLP}^{(t)}(h^{(t+\frac{1}{2})}(\hat{u}))$

$$\hat{\boldsymbol{v}}^{(t+1)}(\hat{\boldsymbol{v}}) = \mathrm{MLP}^{(t)}\Big(h^{(t)}(\hat{\boldsymbol{v}}), h^{(t+\frac{1}{2})}(\hat{\boldsymbol{v}}), \sum_{\hat{\boldsymbol{u}} \in \mathcal{N}_{\mathrm{left}}^{G}(\hat{\boldsymbol{v}})} \mathrm{MLP}_{A}^{(t)}(h^{(t)}(\hat{\boldsymbol{u}})), \sum_{\hat{\boldsymbol{u}} \in \mathcal{N}_{\mathrm{left}}^{G}(\hat{\boldsymbol{v}})} \mathrm{MLP}_{B}^{(t)}(h^{(t+\frac{1}{2})}(\hat{\boldsymbol{u}}))\Big)$$

Forward Propagation

(k,c)(≤)-SetGNN*

Bidirectional <u>Sequential</u> Message Passing

$$m = k - 1 \text{ to } 1, \forall m \text{-set } \hat{\boldsymbol{v}}, h^{(t+\frac{1}{2})}(\hat{\boldsymbol{v}}) = \text{MLP}_{m,1}^{(t)} \left(h^{(t)}(\hat{\boldsymbol{v}}), \sum_{\hat{\boldsymbol{u}} \in \mathcal{N}_{\text{right}}^G(\hat{\boldsymbol{v}})} \text{MLP}_{m,2}^{(t)}(h^{(t+\frac{1}{2})}(\hat{\boldsymbol{u}})) \right) \text{ Backward}$$
$$m = 2 \text{ to } k, \forall m \text{-set } \hat{\boldsymbol{v}}, h^{(t+1)}(\hat{\boldsymbol{v}}) = \text{MLP}_{m,1}^{(t+\frac{1}{2})} \left(h^{(t+\frac{1}{2})}(\hat{\boldsymbol{v}}), \sum \text{MLP}_{m,2}^{(t+\frac{1}{2})}(h^{(t+1)}(\hat{\boldsymbol{u}})) \right) \text{ Forward}$$

 $\hat{oldsymbol{u}} \! \in \! \mathcal{N}_{ ext{left}}^G(\hat{oldsymbol{v}})$

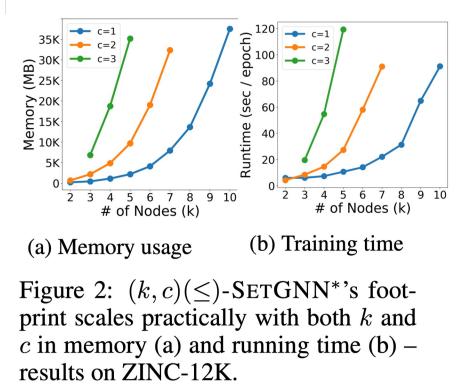
- Expressivity:
 - Thm. 6: (k,c)(≤)-SetGNN $\Leftrightarrow (k,c)(≤)$ -SetWL
 - Thm. 7:

t-layer $(k,c)(\leq)$ -SetGNN* is more expressive than tlayer $(k,c)(\leq)$ -SetGNN

Experimental Results

Table 4: $(k, c)(\leq)$ -SETGNN^{*} performances on ZINC-12K by varying (k, c). Test MAE at lowest Val. MAE, and lowest Test MAE.

		,		
k	c	Train loss	Val. MAE	Test MAE
2	1	0.1381 ± 0.0240	0.2429 ± 0.0071	0.2345 ± 0.0131
3	1	0.1172 ± 0.0063	0.2298 ± 0.0060	0.2252 ± 0.0030
4	1	0.0693 ± 0.0111	0.1645 ± 0.0052	0.1636 ± 0.0052
5	1	0.0643 ± 0.0019	0.1593 ± 0.0051	0.1447 ± 0.0013
6	1	0.0519 ± 0.0064	0.0994 ± 0.0093	0.0843 ± 0.0048
7	1	0.0543 ± 0.0048	0.0965 ± 0.0061	0.0747 ± 0.0022
8	1	0.0564 ± 0.0152	0.0961 ± 0.0043	0.0732 ± 0.0037
9	1	0.0817 ± 0.0274	0.0909 ± 0.0094	0.0824 ± 0.0056
10	1	0.0894 ± 0.0266	0.1060 ± 0.0157	0.0950 ± 0.0102
2	2	0.1783 ± 0.0602	0.2913 ± 0.0102	0.2948 ± 0.0210
3	2	0.0640 ± 0.0072	0.1668 ± 0.0078	0.1391 ± 0.0102
4	2	0.0499 ± 0.0043	0.1029 ± 0.0033	0.0836 ± 0.0010
5	2	0.0483 ± 0.0017	0.0899 ± 0.0056	0.0750 ± 0.0027
6	2	0.0530 ± 0.0064	0.0927 ± 0.0050	0.0737 ± 0.0006
7	2	0.0547 ± 0.0036	0.0984 ± 0.0047	0.0784 ± 0.0043
3	3	0.0798 ± 0.0062	0.1881 ± 0.0076	0.1722 ± 0.0086
4	3	0.0565 ± 0.0059	0.1121 ± 0.0066	0.0869 ± 0.0026
5	3	0.0671 ± 0.0156	0.1091 ± 0.0097	0.0920 ± 0.0054



Summary

- (k,c)(≤)-SetGNN(*): a practical and progressively expressive GNN improved from k-WL.
- Code: <u>https://github.com/LingxiaoShawn/KCSetGNN</u>

Thank you!

