From Stars to Subgraphs: Uplifting any GNN with local structure awareness

Accepted at ICLR 2022: International Conference on Learning Representations

Lingxiao Zhao, Wei Jin, Leman Akoglu, Neil Shah

The Big Picture

Carnegie Mellon University

Agenda

- Background
 - Graph Regression & Classification
 - Graph Neural Network (GNN)
 - Expressivity & Universality
- From Stars to Subgraphs
- GNN-AK: Boosting Expressivity for Any GNN

3

- SubgraphDrop: Improving Scalability
- Experiments

• Regression & Classification

Graph Regression & Classification

• Graph Representation Learning

$$g(\boldsymbol{s}) \rightarrow \boldsymbol{m}$$

 $(\Box \Box \Box \Box) \longrightarrow \begin{array}{c} \text{Continous } \mathbf{y} \\ \text{Categorical } \mathbf{y} \end{array}$

Carnegie Mellon University

• Real-world Problems

Chip Placement

[Mirhoseini et. al 2021]

Mirhoseini, Azalia, et al. "A graph placement methodology for fast chip design." Nature (2021)

• Real-world Problems

Artificial intelligence yields new antibiotic

A deep-learning model identifies a powerful new drug that can kill many species of antibiotic-resistant bacteria.

Anne Trafton | MIT News Office February 20, 2020

Halicin

Carnegie Mellon University

Drug Discovery

• Real-world Problems

Open Catalyst Project

Using AI to model and discover new catalysts to address the energy challenges posed by climate change.

7

Carnegie Mellon University

Cheminformatics

• Input Graph

8

• Architecture: <u>stacking message passing layers</u>

Carnegie Mellon University

• (t-th) Message Passing Layer

$$h_v^{(t)} = \operatorname{AGG}^{(t)}\left(h_v^{(t-1)}, \left\{\operatorname{MSG}^{(t)}(h_u^{(t-1)}) | u \in \mathcal{N}(v)\right\}\right)$$

• Pool Layer

$$h_G = \operatorname{Pool}\left(\{h_u^{(T)} | u \in V_G\}\right)$$

• Sum or Mean

Carnegie Mellon University

Expressivity & University

- MLP is universal function approximator
 - Function space: Functions over <u>Euclidean</u> space
 - Given enough neurons.
- How about GNN?
 - Function space: Functions over <u>graph</u> space
 - GNN is **NOT** universal approximator!
 - Output Solving S

Expressivity & University

- Graph isomorphism test
 - NP-intermediate Problem (if P!= NP)

Expressiveness & Universality

• Weisfeiler-Lehman Isomorphism Test (1-WL)

• t-th iteration

$$c^{(t)}(v) = \mathrm{HASH}\left(c^{(t-1)}(v), \left\{c^{(t-1)}(u) | u \in \mathcal{N}_v\right\}\right)$$

• Output histogram of colors after T iterations.

Carnegie Mellon University

Expressivity & University

- The expressivity of GNN
 - Upper bounded by <u>1-WL test</u> [Xu et al. 19]
 - Cannot
 - Find cycles
 - Find triangles
 - Calculate diameter
 - Distinguish regular graphs
 - ...
- How to improve **expressivity** efficiently?

Agenda

- Background
- From Stars to Subgraphs
 - Subgraph-1-WL
 - Subgraph-1-WL*
 - Theoretical Analysis
- GNN-AK: Boosting Expressivity for Any GNN
- SubgraphDrop: Improving Scalability
- Experiments

Bottleneck of 1-WL

• The star pattern

Bottleneck of 1-WL

• Example: two non-isomorphic <u>regular</u> graphs

• All stars are the **same**:

From Stars to Subgraphs

- Go beyond star
- Subgraphs are **NOT** same!

Subgraph-1-WL*

- HASH a graph is not trivial!
- Solution: a weaker version Subgraph-1-WL*

Theoretical Analysis

- How expressive is Subgraph-1-WL?
 <u>Strictly more powerful</u> than 1&2-WL

 - No less powerful than 3-WL
- Expressivity upper bound: For <u>any **k**>=3</u>, exist a pair of **k**-WL-failed graphs that cannot be distinguished by Subgraph-1-WL
- Established sufficient conditions for successful isomorphism test using Subgraph-1-WL

See proofs in paper.

Agenda

- Background
- From Stars to Subgraphs
- > GNN-AK: Boosting Expressivity for Any GNN
 - General formulation
 - GNN-AK
 - GNN-AK+
- SubgraphDrop: Improving Scalability
- Experiments

GNN-AK: the neural version Subgraph-1-WL*

 Under sufficient condition, GNN is as expressive as 1-WL [Chen et al. 19]

 $\rightarrow h_v^{(t)}$

• Subgraph-1-WL*

GNNAsKernel

GNN

1-WL

GNN-AK

• t-th layer of GNN

$$h_v^{(t)} = \operatorname{AGG}^{(t)}\left(h_v^{(t-1)}, \left\{\operatorname{MSG}^{(t)}(h_u^{(t-1)}) | u \in \mathcal{N}(v)\right\}\right)$$

Encoding of Star[v]

• t-th layer of GNN-AK

$$h_v^{(t)} = \text{GNN}^{(t)} \left(\text{Subgraph}^{(t-1)}[v] \right)$$

Encoding of <u>Subgraph[v]</u> via a GNN

$$= \operatorname{Pool}\left\{ \left\{ \operatorname{Emb}(i|v) \mid i \in \operatorname{Subgraph}[v] \right\} \right\}$$

Subgraph node embeddings pre pool

GNN-AK+: more powerful than GNN-AK

Additional one type of encoding: <u>context</u> encoding

$$h_v^{(t)|\text{context}} = \text{Pool}\Big(\big\{\text{Emb}(v|\boldsymbol{j}) \mid \forall \boldsymbol{j} \text{ s.t. } v \in \text{Subgraph}[\boldsymbol{j}]\big\}\Big)$$

- Using <u>Distance-To-Centroid</u> feature
 - Free feature calculated during subgraph extraction
 - Help expressivity
 [Li et al. 2020]*

) Centroid

- 🔵 1-hop to Centroid
- 2-hop to Centroid

Carnegie Mellon University

Subgraph

* [Li et al. 2020] shows pairwise shortest path distance can help improving expressivity. 26

Visualization

1 layer of GNN-AK(+)

Carnegie Mellon University

Agenda

- Background
- From Stars to Subgraphs
- GNN-AK: Boosting Expressivity for Any GNN
- SubgraphDrop: Improving Scalability
 - Complexity Analysis
 - Drop Subgraphs in Training
- Experiments

SubgraphDrop: Improving Scalability

- Complexity Overheard Analysis
 - t-th layer of GNN: $O(|V_G| + |E_G|)$
 - t-th layer of GNN-AK(+): $O\Big(\sum_{v \in V_G} |V_{\mathrm{Subgraph}[v]}| + \sum_{v \in V_G} |E_{\mathrm{Subgraph}[v]}|\Big)$
- How to reduce this overhead?
 - Reduce subgraph size
 - Reduce number of subgraphs

Reduce Number of Subgraphs

- Subsampling some subgraphs?
 - Still throw out informations
- Solution:
 - Only <u>randomly</u> drop subgraphs during **training**!
 - Every subgraph is used across epochs
 - Still use ALL subgraphs during evaluation
- Difficulty:
 - Handling misalignment between train and evaluation

Handling misalignment

- Context Encoding
 - Scale is smaller during training
 - Solution: scale it up
- Centroid & Subgraph Encoding
 - Some nodes don't have encoding
 - Solution: estimate them by propagation

SubgraphDrop: Improving Scalability

• Each node is covered **R** times by sampled subgraphs.

Agenda

- Background
- From Stars to Subgraphs
- GNN-AK: Boosting Expressivity for Any GNN
- SubgraphDrop: Improving Scalability
- > Experiments
 - Expressivity Verification
 - The Ability in Counting Substructures
 - The Ability in Regressing Graph Properties
 - Real-World Performance

Experiment: Expressivity Verification

- EXP: 600 pairs of 1-WL-failed graphs, split into 2 classes.
- SR25: 15 3-WL-failed graphs, 15-class classification.
- Base GNNs
 - GCN [Kipf & Welling, 2017]
 - GIN [Xu et al., 2018]
 - PNA [Corso et al., 2020]
 - PPGN [Maron et al., 2019a] (more powerful than others)

Method	EXP (ACC)	SR25 (ACC)
GCN	50%	6.67%
GCN-AK+	100%	6.67%
GIN	50%	6.67%
GIN-AK ⁺	100%	6.67%
PNA*	50%	6.67%
PNA*-AK ⁺	100%	6.67%
PPGN	100%	6.67%
PPGN-AK ⁺	100%	100%

Carnegie Mellon University

Experiment: Counting Substructures

Method	Counting Substructures (MAE)						
Wellow	Triangle Tailed Tri.		Star	4-Cycle			
GCN	0.4186	0.3248	0.1798	0.2822			
GCN-AK+	0.0137	0.0134	0.0174	0.0183			
GIN	0.3569	0.2373	0.0224	0.2185			
GIN-AK ⁺	0.0123	0.0112	0.0150	0.0126			
PNA*	0.3532	0.2648	0.1278	0.2430			
PNA*-AK+	0.0118	0.0138	0.0166	0.0132			
PPGN	0.0089	0.0096	0.0148	0.0090			
PPGN-AK ⁺	OOM	OOM	OOM	OOM			

35

Experiment: Regress Graph Properties

Method	Graph Properties ($\log_{10}(MAE)$)					
	IsConnected	Diameter	Radius			
GCN	-1.7057	-2.4705	-3.9316			
GCN-AK ⁺	-2.6705	-3.9102	-5.1136			
GIN	-1.9239	-3.3079	-4.7584			
GIN-AK ⁺	-2.7513	-3.9687	-5.1846			
PNA*	-1.9395	-3.4382	-4.9470			
PNA*-AK+	-2.6189	-3.9011	-5.2026			
PPGN	-1.9804	-3.6147	-5.0878			
PPGN-AK ⁺	OOM	OOM	OOM			

Experiment: Real-World Performance

- Datasets:
 - 3 from Benchmarking GNN [Dwivedi et al., 2020]
 - 2 from Open Graph Benchmark [Hu et al., 2020]

Dataset	Task Semantic	# Cls./Tasks	# Graphs	Ave. # Nodes	Ave. # Edges
ZINC-12K	Regress molecular property	1	10000 / 1000 / 1000	23.1	49.8
CIFAR10	10-class classification	10	45000 / 5000 / 10000	117.6	1129.8
PATTERN	Recognize certain subgraphs	2	10000 / 2000 / 2000	118.9	6079.8
MolHIV	1-way binary classification	1	32901 / 4113 / 4113	25.5	54.1
MolPCBA	128-way binary classification	128	350343 / 43793 / 43793	3 25.6	55.4

Experiment: Real-World Performance

Method	ZINC-12K (MAE)	CIFAR10 (ACC)	PATTERN (ACC)	MolHIV (ROC)	MolPCBA (AP)
GatedGCN HIMP PNA DGN GSN CIN	$\begin{array}{c} 0.363 \pm 0.009 \\ 0.151 \pm 0.006 \\ 0.188 \pm 0.004 \\ 0.168 \pm 0.003 \\ 0.115 \pm 0.012 \\ \textbf{0.079} \pm \textbf{0.006} \end{array}$	$\begin{array}{c} 69.37 \pm 0.48 \\ - \\ 70.47 \pm 0.72 \\ 72.84 \pm 0.42 \\ - \\ - \\ - \end{array}$	$\begin{array}{c} 84.480 \pm 0.122 \\ - \\ 86.567 \pm 0.075 \\ 86.680 \pm 0.034 \\ - \\ - \\ - \end{array}$	$\begin{array}{c} -\\ 0.7880 \pm 0.0082\\ 0.7905 \pm 0.0132\\ 0.7970 \pm 0.0097\\ 0.7799 \pm 0.0100\\ \textbf{0.8094} \pm \textbf{0.0057}\end{array}$	$\begin{array}{c} - \\ - \\ 0.2838 \pm 0.0035 \\ 0.2885 \pm 0.0030 \\ - \\ - \\ - \end{array}$
GCN GCN-AK ⁺	$\begin{array}{c} 0.321 \pm 0.009 \\ 0.127 \pm 0.004 \end{array}$	$\begin{array}{c} 58.39 \pm 0.73 \\ 72.70 \pm 0.29 \end{array}$	$\begin{array}{c} 85.602 \pm 0.046 \\ \textbf{86.887} \pm \textbf{0.009} \end{array}$	$\begin{array}{c} 0.7422 \pm 0.0175 \\ 0.7928 \pm 0.0101 \end{array}$	$\begin{array}{c} 0.2385 \pm 0.0019 \\ 0.2846 \pm 0.0002 \end{array}$
GIN GIN-AK ⁺	$\begin{array}{c} 0.163 \pm 0.004 \\ \textbf{0.080} \pm \textbf{0.001} \end{array}$	$\begin{array}{c} 59.82 \pm 0.33 \\ 72.19 \pm 0.13 \end{array}$	$\begin{array}{c} 85.732 \pm 0.023 \\ 86.850 \pm 0.057 \end{array}$	$\begin{array}{c} 0.7881 \pm 0.0119 \\ 0.7961 \pm 0.0119 \end{array}$	$\begin{array}{c} 0.2682 \pm 0.0006 \\ \textbf{0.2930} \pm \textbf{0.0044} \end{array}$
PNA* PNA*-AK+	$\begin{array}{c} 0.140 \pm 0.006 \\ 0.085 \pm 0.003 \end{array}$	$\begin{array}{c} 73.11 \pm 0.11 \\ \text{OOM} \end{array}$	$\begin{array}{c} 85.441 \pm 0.009 \\ \text{OOM} \end{array}$	$\begin{array}{c} 0.7905 \pm 0.0102 \\ 0.7880 \pm 0.0153 \end{array}$	$\begin{array}{c} 0.2737 \pm 0.0009 \\ 0.2885 \pm 0.0006 \end{array}$
GCN-AK ⁺ -S GIN-AK ⁺ -S PNA*-AK ⁺ -S	$\begin{array}{c} 0.127 \pm 0.001 \\ 0.083 \pm 0.001 \\ 0.082 \pm 0.000 \end{array}$	$\begin{array}{c} 71.93 \pm 0.47 \\ 72.39 \pm 0.38 \\ \textbf{74.79} \pm \textbf{0.18} \end{array}$	$\begin{array}{c} 86.805 \pm 0.046 \\ 86.811 \pm 0.013 \\ 86.676 \pm 0.022 \end{array}$	$\begin{array}{c} 0.7825 \pm 0.0098 \\ 0.7822 \pm 0.0075 \\ 0.7821 \pm 0.0143 \end{array}$	$\begin{array}{c} 0.2840 \pm 0.0036 \\ 0.2916 \pm 0.0029 \\ 0.2880 \pm 0.0012 \end{array}$

Experiment: Scalability via SubgraphDrop

- Each node is covered **R** times by sampled subgraphs.
- R = 1: similar resource usage as base GNN

Table 4: Resource analysis of SubgraphDrop.

		GIN-AK ⁺ -S						
Dataset		R=1	<i>R</i> =2	<i>R</i> =3	<i>R</i> =4	<i>R</i> =5	GIN-AK+	GIN
ZINC-12K	MAE	0.1216	0.0929	0.0846	0.0852	0.0854	0.0806	0.1630
	Runtime (S/Epoch)	10.8	11.2	12.0	12.4	12.5	9.4	6.0
	Memory (MB)	392	811	1392	1722	1861	1911	124
CIFAR10	ACC	71.68	72.07	72.39	72.20	72.32	72.19	59.82
	Runtime (S/Epoch)	80.7	89.1	100.5	110.9	119.7	241.1	55.0
	Memory (MB)	2576	4578	6359	8716	10805	30296	801

Summary

- GNN-AK: The first <u>general</u> framework of uplifting GNN with <u>theoretical support</u>, great <u>scalability</u>, and remarkable <u>practical</u> performance.
- Code: https://github.com/GNNAsKernel/GNNAsKernel

Thank you!

