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Abstract
Graph-Level Outlier Detection (GLOD) is the
task of identifying unusual graphs within a graph
database, which received little attention compared
to node-level detection in a single graph. As prop-
agation based graph embedding by GNNs and
graph kernels achieved promising results on an-
other graph-level task, i.e. graph classification, we
study applying those models to tackle GLOD. In-
stead of developing new models, this paper identi-
fies and delves into a fundamental and intriguing
issue with applying propagation based models
to GLOD, with evaluation conducted on repur-
posed binary graph classification datasets where
one class is down-sampled as outlier. We find that
ROC-AUC performance of the models changes
significantly (“flips” from high to low) depending
on which class is down-sampled. Interestingly,
ROC-AUCs on these two variants approximately
sum to 1 and their performance gap is amplified
with increasing propagations. We carefully study
the graph embedding space produced by propa-
gation based models and find two driving factors:
(1) disparity between within-class densities which
is amplified by propagation, and (2) overlapping
support (mixing of embeddings) across classes.
Our study sheds light onto the effects of using
graph propagation based models and classification
datasets for outlier detection for the first time.

1. Introduction
Given a graph database (i.e., a large collection) of node-
attributed/labeled graphs, how can we effectively identify
the anomalous ones within the set? Graphs of such nature
are widespread in finance, health care and insurance, cyber-
security, fault monitoring, etc. where the outlier detection
task finds a long list of applications such as identifying rare
transaction graphs (Nguyen et al., 2020), command flow
graphs (Manzoor et al., 2016), and human poses (Markovitz
et al., 2020), fake news (Monti et al., 2019), traffic events
(Harshaw et al., 2016), buggy software (Liu et al., 2005),
money laundering (Weber et al., 2019), and so on.

In this paper we study the graph-level outlier detection

(GLOD) problem. Despite its wide application and grow-
ing influence in real-world, surprisingly, limited work ex-
ists for specifically solving this problem. As propagation
based methods like graph kernels and graph neural networks
achieve great success in capturing graph representation, we
specifically adapt several propagation based methods for
solving GLOD including kernels and GNNs. Surprisingly,
peculiar issues have been consistently observed for all prop-
agation based methods over lots of datasets when evaluating
on repurposed binary graph classification dataset (down-
sample one class as ground-truth outlier class). As observed
issues become an unavoidable obstacle for effectively solv-
ing the graph-level outlier detection problem, we aim to
provide extensive and deep study to understand these issues
and we believe it has broader impact on outlier detection
and graph representation learning.

We summarize our contributions in the following:

• Study of Deep Graph-level Outlier Detection: We
start with the design and evaluation of two different
categories of models for outlier detection in graph
databases; namely, (1) two-stage models—pipelining
unsupervised graph-level representation learning with
off-the-shelf outlier detectors, and (2) end-to-end
models—learning representations simultaneously with
optimizing an anomaly detection objective, such as
one-class classification or reconstruction loss. (Sec. 2)

• “Performance Flip” Issue: We evaluated the afore-
mentioned graph outlier models on repurposed binary
graph classification dataset, by down-sampling one
class of those datasets in both “directions” as outlier.
Surprisingly, we find that most models, while achieving
high detection performance on one variant, fail consid-
erably on the other. That is, we identify the intriguing
issue of what we call “performance flip” depending on
which class has been down-sampled.

• Driving Factors behind “Performance Flip”: We
identify two key leading factors behind the observed
“performance flip” issue, particularly (1) density dis-
parity; where the density of graph embeddings differ
considerably between two classes, and (2) overlapping
support; where the distributions of graph embeddings
from the two classes exhibit overlapping support in the
representation space. We design quantitative metrics
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to concretely measure those factors (Sec. 3.3).
• Insights for Outlier Detection and Beyond: Our

findings have implications for the fair and systematic
evaluation of outlier models. Moreover, we argue that
issues we identify can extend beyond outlier detection,
with possible implications on graph classification and
clustering. It also questions current graph representa-
tion learning methods.

2. Outlier Detection Problem & Models
In this paper we focus on the graph-level outlier detection
problem. The intriguing “performance flip” issue we ob-
serve arises from repurposing binary graph classification
datasets for outlier detection evaluation. As far as we know,
there is limited work studying the graph-level outlier detec-
tion problem, where the goal is to discover graphs with rare,
unusual patterns which can be distinguished from the major-
ity of graphs in a database. We call attention to the problem
as it applies to many important real-world tasks from di-
verse domains such as drug discovery, money laundering,
molecular synthesis, rare human pose detection (Markovitz
et al., 2020), fake news detection (Monti et al., 2019), traffic
events detection (Harshaw et al., 2016), and buggy software
detection (Liu et al., 2005).

2.1. Graph-Level Outlier Detection

Let G = (V, E ,X) be an attributed or labeled graph with
V and E depicting its vertex set and edge set, where each
node i ∈ V is associated with a feature vector xi ∈ Rd and
X = [x1, . . . ,xn]

T denotes the feature matrix, n = |V|
being the total number of nodes. For labeled graphs, each
node feature vector xi ∈ Rd is a one-hot encoded vector
with d being the total number of unique (discrete) node
labels.
Definition 2.1 (Graph-Level Outlier Detection Problem
(GLOD)). Given a graph database G = {G1, . . . , GN}
containing N labeled or attributed graphs, find the graphs
that differ significantly from the majority of graphs in G.

The above problem is a general statement for graph-level
outlier detection. In the real-world how one defines rareness
or the degree of difference to the majority may be critical
and may change depending on the application.

2.2. Graph-Level Outlier Detection Models

Although there is no specifically designed method existing
for GLOD, several methods for solving graph classification
can be easily modified for tackling the problem. In this
paper we mainly focus on three propagation based meth-
ods that can be categorized as two types: two-stage versus
end-to-end. For the purposes of this paper, we find these
three methods to be sufficiently illustrative of the issues

we discover. Notice that we focus on studying propagation
based methods as all message-passing based GNNs belong
to this category, and they share similar issues.

2.2.1. TWO-STAGE GRAPH OUTLIER DETECTION

Two-stage graph outlier detection approaches first transform
graphs into graph embeddings or similarities between graphs
by using unsupervised graph embedding methods (such as
graph2vec (Narayanan et al., 2017) and FGSD (Verma &
Zhang, 2017)) or graph kernels (such as Weisfeiler-Leman
(WL) kernel (Shervashidze et al., 2011) and propagation
kernel (Neumann et al., 2016)). Then traditional outlier
detectors such as Local Outlier Factor (LOF (Breunig et al.,
2000)), and one-class SVM (OCSVM) (Manevitz & Yousef,
2001) can be used to detect outliers in the embedding (vec-
tor) space. These approaches are easy to use and do not
require much hyperparameter tuning, which makes them rel-
atively stable for an unsupervised task like outlier detection.
Nevertheless, two-stage methods may suffer from subopti-
mal solution as the feature extractor and outlier detector are
independent.

To illustrate the performance flip issue, we focus on graph
kernel based two-stage approaches with well-known outlier
detectors LOF. A graph kernel defines a kernel function K
that outputs a similarity between two graphs. Formally it can
be written as K(G,G′) = 〈φ(G), φ(G′)〉H, where H is a
RKHS and 〈·, ·〉 is the dot product inH. The mapping φ(G)
transforms graph G to an embedding vector in H, which
in our case contains counts of atomic subgraph patterns.
Specifically we use the Weisfeiler-Leman subtree kernel
and the propagation kernel, described as follows.

Weisfeiler-Leman Subtree Kernel. Inspired by Weisfeiler-
Leman (WL) test of graph isomorphism (Weisfeiler & Le-
man, 1968) (a.k.a. the color-refinement algorithm), WL
subtree kernel (Shervashidze et al., 2011) processes a la-
beled graph by iteratively re-labeling each vertex with a new
label compressed from a multiset label consisting of the
vertex’s original label and the sorted labels of its neighbors.
This procedure repeats for L iterations for all graphs and
outputs L re-labeled graphs {G1, ..., GL} for every graph
G. One can easily show that each vertex in Gl at l iterations
represents the subtree of the original vertex with depth l.
WL subtree kernel compares two graphs by simply counting
the number of co-occurrences of labels in both graphs at
each iteration. The similarity score of two graphs is the
summation of similarities across iterations.

Sparsification. Next we highlight a key issue of the WL
subtree kernel that is closely related to the performance
flip issue we discover. Substructure-based graph kernels
consider each substructure as a separate feature to compare
among graphs. The total number of distinct substructures
grows exponentially in the diameter of the substructures,
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which leads to the sparsity problem — that only a limited
number of substructures would be shared among graphs.
This property has also been referred to as diagonal domi-
nance (Yanardag & Vishwanathan, 2015; Narayanan et al.,
2016) — wherein each individual graph would mostly be
similar only to itself but not much to any other graph. The
sparsification property of WL kernel is visualized in Fig. 1,
where the diagonal dominance and diminishing similarity
among graphs are observed clearly.
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Figure 1: Sparsification in WL: Pairwise similarity of graphs (from
DD dataset) decreases with increasing number of iterations.

Propagation Kernel. Propagation kernel (PK) (Neumann
et al., 2016) is inspired from the idea of propagating label
information among nodes. It shares similar structure as WL
kernel. See Appendix.A.1 for detail introduction and its
sparsification problem.

2.2.2. END-TO-END DEEP GRAPH OUTLIER
DETECTION

Although several works have successfully applied GNNs
to node-level outlier detection on a single graph, such as
OCGNN (Wang et al., 2020) and DOMINANT (Ding et al.,
2019), there is no deep model proposed for graph-level out-
lier detection. Here we present a GNN model adapted from
graph classification, and leverage a one-class classification
objective function to address graph-level outlier detection.
Compared with the widely used Graph Convolution Net-
work (GCN) (Kipf & Welling, 2017) model, Graph Isomor-
phism Network (GIN) (Xu et al., 2019) has been shown to
be as powerful as the WL test of graph isomorphism, as
such, we design a GIN based graph-level outlier detector.
Note that an earlier GNN model called DGCNN (Zhang
et al., 2018) has discussed its connection to WL subtree
kernel and propagation kernel. GIN builds on the ideas of
DGCNN, and as a result also shares connection to these
graph kernels.

Let h(l)v be the l-th layer representation of node v in the GIN
model. GIN updates node representations at each layer by

h(l)v = MLP(l)
(
(1 + ε(l)) · h(l−1)v +

∑
u∈N (v)

h(l−1)u

)
(1)

where MLP denotes a multi-layer perceptron (we use 2
layer) and N (v) denotes the direct neighbors of node v.
After L layers, GIN generates the graph-level representation

(i.e. graph embedding) using a readout function as follows.

hG = CONCAT
(

MEAN({h(l)v |v ∈ G}) | Ll=0

)
(2)

To build one-class classification into the GIN model, we
borrow the idea from DeepSVDD (Ruff et al., 2018). Specif-
ically, we optimize the one-class deep SVDD objective at
the output layer of the GIN model as

min
W

1

N

N∑
i=1

‖GIN(Gi;W )− c‖2 + λ

2

L∑
l=1

‖W l‖2F (3)

where W l denotes the parameter of GIN at the l-th layer,
W = {W 1, ...,W l}, and c is the center of the hypersphere
in the representation space that is obtained as the average of
all graph representations upon initializing GIN model. After
training the model on all graphs, the distance to center is
used as the outlier score for each graph.

3. Applying Propagation Based Models to
GLOD: Issues

In this section we present in more detail the peculiar “per-
formance flip” issue and related observations associated
with applying propagation based models to GLOD. Inter-
estingly, the strange issue happens to lots of GNN models
(we have evaluated a number of GNN model variants for
GLOD in developing new algorithms) on lots of datasets, al-
though in this paper we only study 3 methods on 4 datasets.
Thus, having a clear understanding of this issue becomes
critical for developing new models for GLOD. In the fol-
lowing, we present the peculiar observations in detail (Sec.
3.1), state our hypothesis on the driving mechanisms behind
these observations (Sec. 3.2), and introduce qualitative and
quantitative measures for our empirical analysis (Sec. 3.3).

3.1. Peculiar Observations

Setup. We present our analysis on 4 widely used binary
graph classification datasets: DD, PROTEINS, NCI1, and
IMDB, which can be obtained from the TUDataset reposi-
tory1 (Morris et al., 2020). DD and PROTEINS are bioin-
formatics datasets, NCI1 is a molecular dataset and IMDB
is a social network. Dataset statistics are summarized in
Appendix.A.2. The performance flip and related issues are
observed for the first 3 datasets, DD, PROTEINS, and NCI1,
but not for IMDB, which is presented for comparison pur-
poses.

We create two main variants of each dataset, by down-
sampling one class or the other (denoted class 0 or class
1), at varying rates. For each variant, we repeat the down-
sampling 10 times with different random seeds such that the

1https://chrsmrrs.github.io/datasets/

https://chrsmrrs.github.io/datasets/
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results are not an artifact of a specific data split. We report
results using L = 5 for all models unless otherwise noted.

3.1.1. PECULIAR OBSERVATION 1: PERFORMANCE FLIP.

The main observation we make in this work is that the de-
tection performances of the outlier models appear to depend
significantly on which class is down-sampled. Table 1 shows
the ROC-AUC performance on all datasets, i.e. their two
variants, at down-sampling rate 0.1 for all three methods,
which supports the following observation:
Observation 1 (Performance Flip). (1) A large ROC-AUC
gap is observed between the two different down-sampled
variants of DD, PROTEINS, and NCI1, consistently across
all models. The bad performance is surprisingly worse than
random (ROC-AUC < 0.5). (2) Even more, the sum of the
two ROC-AUC values on the two variants is approximately
equal to 1.
Table 1: Average ROC-AUC performance (and standard deviation)
of 3 different graph embedding based methods for GLOD. Each
dataset has 2 down-sampled variants, where outliers are created by
down-sampling one of two classes (class 0 or class 1) with rate=
0.1, averaged over 10 different down-samplings. Performance flip
observed on DD, PROTEINS, and NCI1 for all outlier models,
where ROC-AUC is significantly larger on one variant than
the other. ROC-AUC values less than 0.5 are shown in bold as
they indicate worse-than-random performance.

Dataset Outlier Cls. OCGIN PK+LOF WL+LOF

DD 0 0.712 (0.041) 0.801 (0.026) 0.815 (0.020)
1 0.350 (0.043) 0.240 (0.035) 0.186 (0.024)

PROTEINS 0 0.685 (0.059) 0.564 (0.043) 0.664 (0.024)
1 0.362 (0.040) 0.447 (0.071) 0.276 (0.021)

NCI1 0 0.465 (0.033) 0.403 (0.030) 0.349 (0.022)
1 0.656 (0.031) 0.662 (0.023) 0.730 (0.012)

IMDB 0 0.515 (0.033) 0.543 (0.042) 0.651 (0.022)
1 0.651 (0.032) 0.610 (0.053) 0.603 (0.038)

Recall that ROC-AUC represents the probability of correctly
ranking a random positive instance (i.e. outlier) above a
random negative instance, the observation 1 suggests that
the models always consider the graphs from one fixed class
to be more outlier than those from the other, irrespective
of which one is down-sampled. The ranking by the models
is agnostic to this so-called “ground-truth” but rather has a
pre-determined bias toward one (fixed) class.

3.1.2. PECULIAR OBSERVATION 2: INVARIANCE TO
DOWN-SAMPLING RATE.

When down-sampling one class as outlier with a certain
down-sampling rate, we would conjecture that a lower rate
would make the outlier detection task easier as the density
of outliers becomes lower. Fig. 2 shows the detection
ROC-AUC of WL+LOF (with L = 5 iterations) for various
down-sampling rates, from 0.05 to 0.85, on both variants of
two datasets. The conjecture appears to hold only for IMDB

– on which performance flip is not observed. In contrast,
the performance is strikingly flat on DD, PROTEINS, and
NCI1. Similar results hold for PK+LOF and OCGIN on
these three datasets.
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Figure 2: Performance is invariant to downsampling rate on
DD, PROTEINS, and NCI1 for WL+LOF. Similar behavior is
observed for the other two methods. See Appendix.A.5.

Observation 2 (Invariance to down-sampling rate). Perfor-
mance flip issue is not an artifact of the down-sampling rate,
in fact, ROC-AUC appears to be invariant to the rate.

This observation is in agreement with Observation 1’s (2)
(AUCs-sum-approximately-to-1). The probabilistic inter-
pretation is regarding any two random positive-negative
instances, irrespective of the total number of instances from
those groups.

3.1.3. PECULIAR OBSERVATION 3: GROWING
PERFORMANCE GAP WITH PROPAGATION.

Another key property of the outlier models we employ in
this work is the number of iterations (for WL and PK) or
the number of layers (for GIN), earlier denoted with L
(See Sec. 2.2), both of which correspond to propagations
over the graph. Here we look at how the performance be-
haves under varying L. Fig. 3 shows the performance of
WL+LOF on DD and IMDB datasets for two variants for
L increased from 1 through 11. Results are qualitatively
similar for PK+LOF, however OCGIN behaves differently
(See Appendix.A.6).
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Figure 3: Performance gap between two variants tends to grow
with increasing number of propagations (i.e. iterations) of WL
(subsequently paired with LOF), significantly on DD, PROTEINS,
and NCI1 (see Appendix.A.6). Similar behavior is observed for
the PK-based model.

Observation 3 (Growing gap with propagation). The dif-
ference in ROC-AUC performances on two different down-
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Figure 4: Pairwise similarities among all graphs in DD dataset
(graphs grouped by class) based on WL subtree kernel over in-
creasing iterations (left to right).

sampled variants of a classification dataset tends to grow
with increasing number of graph propagations for WL- and
PK-based outlier models. For OCGIN there exists no obvi-
ous growth.

3.2. Hypothesis on Driving Mechanisms

To better understand above peculiar observations, we fo-
cus on investigating pairwise similarities – either produced
by the graph kernel or the dot product between graph em-
beddings – normalized in range [0, 1]. Figure 4 visualizes
pairwise similarity of all graphs on DD dataset using WL
kernel, with increasing number of graph propagations (i.e. it-
erations). The pairwise similarities are block-wise grouped
based on the true class label. We route attention to two
factors: (1) Diagonal (intra-class) similarities, where we
observe that sparsification arises for both classes but the
speed at which sparsification occurs is different for the two
classes. This leads to growing density disparity among two
classes. (2) Off-diagonal (inter-class) similarities, which
shows that pairwise similarities among graphs within the
sparser class (in Fig. 4, class 0 for DD) are lower than
inter-class similarities on average. This suggests that the
class-level distributions of graphs in the embedding space
have overlapping support.

We conclude by forming the following hypothesis on the
driving mechanisms behind “performance flip” and related
observations. Provided graph embedding methods em-
ployed for outlier detection induce both density disparity as
well as overlapping support, one down-sampling scenario
creates a dense inlier distribution surrounded with dispersed
outliers (‘easy’ task), whereas the other creates a sparse in-
lier distribution that has overlapping support with a small set
of outliers with relatively higher density (‘hard’ task). Since
most models assume the former scenario in their formalism,
they ‘do well’ on the respective ‘easy’ task, and poorly on
the other (Observation 1). What’s more, the effect of prop-
agation based methods on representation densities is way
much larger than changing downsampling rate, which results
in Observation 2 and observed AUCs-sum-approximately-
to-1 behavior (Observation 1’s (2)). The issue is exacerbated
with more graph propagation as it leads to a growing dispar-
ity of densities and respective task difficulties (Observation

3).

3.3. Measures for Analysis

In the previous section we pointed out overlapping support
and (growing) density disparity to be two key factors lead-
ing to the observed unusual behaviors. Here we introduce
concrete measures to quantify these two factors.

1. Qualitative visualization of both factors: Multi-
dimensional scaling (MDS) is used to map the graph
embeddings into 2-dimensions, which can effectively
visualize the degree of overlapping support and the
speed of sparsification for two classes.

2. Quantitative measure of density disparity: The dis-
tance between any two graphs from the sparse class
would be larger. Therefore, we use the so-called NN-
Radius to quantify the degree of density.
Definition 3.1. NN-Radius is the distance (1-similarity
as normalized in range [0, 1]) to the k-th2 nearest
neighbor (NN) of a graph in the embedding space.
A larger radius corresponds to lower local density. The
distribution of the NN-Radius of the graphs from each
class measures the density of the class. A more left-
shifted distribution would imply a denser class.

3. Quantitative measure of overlapping support: In
the absence of overlap, assuming graphs from different
classes are linearly well-separated in the embedding
space (forming two disjoint clusters), we would ex-
pect the nearest neighbors of each graph to be from
the same class. Therefore, we use the so-called NN-
Disagreement% as the degree of overlap, defined as
follows.
Definition 3.2. NN-Disagreement% is the percentage
of graphs from the opposite class within the NN-Radius
of a graph.
We then study the distribution of NN-disagreement%
of the graphs from each class. A left- or right-shifted
distribution would respectively show whether a class is
more likely to be surrounded by its own members (i.e.
well-clustered, dense) or not (i.e. dispersed, sparse).

4. Empirical Analysis
In this section, we present further measurement and quanti-
tative analysis to support our hypothesis presented in Sec.
3.2. The experimental setup has been mentioned it Sec.
3.1. The detailed model configuration is summarized in Ap-
pendix.A.3. All measures are computed on top of pairwise
similarities among all graphs. The detail description of used
similarity is presented in Appendix.A.4.

2In the paper we report results for k = 20 and note that the
take-aways are not sensitive to this choice.
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4.1. Analysis of Datasets with Performance Flip

As mentioned before, the performance flip and other strange
behaviors are observed on 3 datasets: DD, PROTEINS, and
NCI1. Because of space limitation, we present analysis on
DD dataset and all other results can be found in Appendix.

4.1.1. ANALYSIS ON FULL DATA.

We start with analyzing the inherent differences between
two classes regarding density on DD. Fig. 5 (top row)
visualizes the all-pairs similarity matrix based on WL over
increasing iterations where sparsification can be observed
for both classes (left to right). In the second row, 2-d MDS
embeddings of all the graphs based on the corresponding
pairwise similarities are shown. Again sparsification can
be visually confirmed based on the increasing spread of
points (i.e. graphs) in each class. In addition, we notice that
class 0 (green points) sparsify faster than class 1 (orange
points), as the denser class 1 instances are surrounded by
the dispersed class 0 instances. We quantify this difference
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Figure 5: (Top row) Pairwise similarity matrix for all graphs in
full DD dataset, based on WL subtree kernel over increasing
iterations (left to right). (Second row) 2-d MDS visualization
based on the similarity matrix. (Third row) Distribution of NN-
Radius for all graphs in each class. (Last row) Distribution of
NN-Disagreement% for all graphs in each class. Similar result is
observed for PROTEIN and NCI datasets and other methods, see
Appendix.A.7.

via the NN-Radius measure, as in the third row, where the
corresponding distributions of NN-Radius for all graphs are
shown for each class. Over iterations both class distributions
shift to the right (i.e. sparsify). The shift is more evident for
class 0 (i.e. speed of sparsification is larger) as the (green)
histogram spreads out while the other (orange) histogram
remains relatively peaked.

Next we analyze the overlapping support between two
classes. The mixing of colors in the MDS visualizations is
suggestive of overlap.To quantify overlap more concretely,
we show the distributions of NN-Disagreement% for all
graphs in each class in the last row of Fig. 5. The distribu-
tions for class 1 concentrate more on the left side (majority
of neighbors are from the same class) whereas for class
0 they concentrate on the right (majority of neighbors are
from the opposite class). Both density disparity and overlap-
ping support are increasingly more evident with increasing
number of iterations, which suggests that graph propagation
amplifies the issue.

The conclusions are similar for PK on DD, as shown in
Appendix.A.7. For OCGIN (shown in Fig. 6), while we con-
tinue to observe performance flip on DD variants, it is to a
lesser degree. Specifically we find that the disparity between
classes is not worsened with increasing graph propagation
in this case. In fact, the difference in distributions seems
to close especially at the last layer. Irrespectively, OCGIN
performs considerably better when class 0 is down-sampled
like the other models, meaning that it is not shielded from
the performance flip issue that we identify. We believe this
is due to the initial disparity (See Fig. 6(b) at layer 0, i.e.
original input), which it cannot recover from, despite model
training.

4.1.2. ANALYSIS UPON DOWN-SAMPLING.

Next we analyze the flip in performance upon down-
sampling one class or the other via the contrast in NN-
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Figure 6: Quantitative measures of density disparity and overlap-
ping support on DD for OCGIN for increasing graph propagation
(left to right).
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Figure 7: NN-Disagreement% distribution of outliers (top row:
class 1 is down-sampled and bottom row: class 0 is down-sampled,
in red) and inliers (vice versa, in blue) over WL iterations (left to
right) on DD.

Disagreement% distributions. Fig. 7 (top) and (bottom)
respectively show those distributions when class 1 is down-
sampled (denoted Outlier in red) and when class 0 is down-
sampled (now denoted Outlier in red) for WL on DD. We
notice the stark difference: At the (bottom), the inliers form
a dense distribution with negligible mixing with the outliers.
The outliers are dispersed, far from one another, as their
NN-neighborhood mainly contains inliers. This is the ‘easy’
detection task that well aligns with the underlying assump-
tion of most outlier detectors – hence the high peformance
of WL+LOF.

In contrast, the (top) figures suggest that the inliers and
outliers are intermixed, which worsens with propagation as
the distributions become more and more indistinguishable.
(Note that down-sampled class inherently has a right-shifted
distribution as down-sampling induces sparsity.) This cor-
responds to the ‘hard’ detection task where it is difficult to
distinguish inliers from outliers – hence the poor, in fact
worse-than-random performance.

The conclusions are similar for WL+LOF on PROTEINS
and NCI1, respectively. In fact, performance appears to be
inversely correlated with the amount of overlap between the
NN-Disagreement% distributions of inliers and outliers. We
refer to the Appendix.A.8 for similar results on these three
datasets for PK+LOF and OCGIN.

4.2. Analysis of Dataset without Performance Flip

Although the performance flip issue occured on a consid-
erable number of datasets we have experimented with, it
is not always observed. In this section, we present a simi-
lar analysis for IMDB-BINARY for comparison purposes
based on WL, analysis for other methods can be found in
Appendix.A.9.

As shown in Fig. 8, sparsification arises rather fast on
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Figure 8: (Top row) Pairwise similarity matrix for all graphs in
full IMDB-BINARY dataset, based on WL subtree kernel over
increasing iterations (left to right). (Second row) 2-d MDS visual-
ization based on the similarity matrix. (Third row) Distribution of
NN-Radius for all graphs in each class. (Last row) Distribution of
NN-Disagreement% for all graphs in each class.

IMDB-BINARY with increasing WL iterations – notice the
drastic shift of the NN-Radius distributions from left-most
to right-most (third row). Interestingly, the rate (or speed) of
sparsification appears to be similar among the two classes.
As such, density disparity does not seem to arise – notice
the similar mixing among the colored points in 2-d MDS
visualization (second row). On the other hand, we continue
to observe the overlapping support (i.e. mixing) of graph
embeddings to a large extent (last row).

These suggest that down-sampling any one of the classes as
outlier would induce two detection tasks with similar diffi-
culty. Fig. 9 confirms this hypothesis, where the distribution
of inliers and outliers in the embedding space look similar
between the two down-sampled variants of IMDB-BINARY.
Moreover, the outliers are sparser and more dispersed as
compared to the inliers, which consequently leads to better-
than-random performance on both tasks. The ROC-AUC
values are not too high due to the mixing of the embeddings
that makes the detection task harder. In Sec. 3.2 we argued
that density disparity alone is not a sufficient condition for
performance flip. This result on IMDB-BINARY shows that
overlapping support (i.e. mixing) alone is also not a suffi-



Issues with Propagation Based Models for Graph-Level Outlier Detection

0.0 0.5 1.0
Disagree% in 20-NN

0

2

4

6

De
ns

ity
 o

f g
ra

ph
s

iter=1, roc=0.650

Inlier
Outlier

0.0 0.5 1.0
Disagree% in 20-NN

0

2

4

6

De
ns

ity
 o

f g
ra

ph
s

iter=5, roc=0.612

Inlier
Outlier

0.0 0.5 1.0
Disagree% in 20-NN

0

2

4

6

De
ns

ity
 o

f g
ra

ph
s

iter=9, roc=0.600

Inlier
Outlier

Class 1 as outlier with its downsampling rate =0.1

0.0 0.5 1.0
Disagree% in 20-NN

0

2

4

6

8

De
ns

ity
 o

f g
ra

ph
s

iter=1, roc=0.619

Inlier
Outlier

0.0 0.5 1.0
Disagree% in 20-NN

0.0

2.5

5.0

7.5

10.0

De
ns

ity
 o

f g
ra

ph
s

iter=5, roc=0.670

Inlier
Outlier

0.0 0.5 1.0
Disagree% in 20-NN

0.0
2.5
5.0
7.5

10.0

De
ns

ity
 o

f g
ra

ph
s

iter=9, roc=0.675

Inlier
Outlier

Class 0 as outlier with its downsampling rate =0.1

Figure 9: NN-Disagreement% distribution of outliers (top row:
class 1 is down-sampled and bottom row: class 0 is down-sampled,
in red) and inliers (vice versa, in blue) over WL iterations (left to
right) on IMDB-BINARY.

cient condition for the performance flip. Both conditions
together give rise to the issue.

5. Discussion of the Findings
The findings in our paper are studied in the context of graph-
level outlier detection, which stands at the intersection of
graph representation learning and outlier detection. On one
hand, performance flip becomes an obstacle for effectively
solving the graph-level outlier detection problem. On the
other hand, it also raises a ‘red flag’ regarding potentially
broader problems in these two widely studied fields: outlier
detection and graph representation learning. We mainly talk
about graph representation learning, and put discussion of
outlier detection in Appendix.A.10.

To the best of our knowledge, our findings have not been
reported in any prior work. Arguably, we believe that the is-
sues we have identified have broader implications for graph
classification and graph-level clustering using graph neu-
ral networks, and the potential to open new directions of
future work in both fields. The authors of the Graph Isomor-
phism Network (GIN) (Xu et al., 2019) have claimed GIN
to be “the most expressive [architecture] among the class
of GNNs” because it can be as discriminative as the WL
graph isomorphism test. We challenge this viewpoint: the
discriminating ability of the WL test may not be suitable to
be built into graph representation learning when used for
tasks that expect well-clustered data in the feature space.
In particular, (graph-level) clustering would work well for
well-clustered data with clear cluster boundaries – which
would be adversely affected by the mixing (i.e. overlap)
and sparsification issues we have identified. In addition,
graph classification would work well provided distinguish-
able class manifolds that are densely sampled from (to be
able to learn discriminative class boundaries) – for which
mixing and sparsity would be deteriorating, where a small

amount of sparsely sampled training data from a class would
not be representative of the support region of the class and
would lead to poor generalization. We believe the conflict
in viewpoints arises as we draw attention to graph-level
tasks whereas a vast body of prior work on representation
learning, including GIN, focused on node-level tasks (i.e.
node embedding). More research is called for the expressive
power of various graph embedding techniques.

6. Conclusion
In this work we identified the (what we call) performance
flip issue with propagation based model, including graph
kernel and graph neural network based models, on GLOD
problem evaluated with repurposing binary graph classifi-
cation datasets. While down-sampling one class to consti-
tute the outliers yields relatively high ROC-AUC perfor-
mance for the models, down-sampling the other yields sig-
nificantly worse (in fact, worse than random) performance,
irrespective of the down-sampling rate. The performances
on these two variants approximately sum to 1, implying one
of the classes is always deemed more outlying irrespective
of which one is down-sampled.

Through careful analysis, we find that the driving factors
behind the issue are two: (1) disparity between class-level
densities (or within-class sample similarity), and (2) over-
lapping support of the density distributions. We also find
specifically for kernel based models that graph propagation,
and the associated sparsification property, is a contribut-
ing factor that amplifies the disparity and ultimately the
performance gap.

Our findings have implications for the fair and effective
evaluation of outlier models. Our analysis provides tools
for better understanding the datasets used for benchmark
evaluation. We also shed light onto the effect of graph prop-
agation on the distribution of graph embeddings, which we
argued to likely have further implications for graph classifi-
cation and clustering tasks. To facilitate future research on
these and related issues, we will release a deep graph-level
anomaly detection library in future.
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A. Supplementary Material
A.1. Propagation Kernel and Sparsification Issue

Propagation kernel (PK) (Neumann et al., 2016) is inspired from the idea of propagating label information among nodes over
the graph structure such as label propagation algorithm (Zhu & Ghahramani, 2002) for semi-supervised node classification
and can be used for both attributed graphs and one-hot encoded labeled graphs. For each graph G = (V, E ,X), let X0 = X
denote the original feature matrix. Then PK generates a new feature matrix at each iteration by propagating the feature
matrix using the transition matrix T = D−1A (where A is the adjacency matrix and D is the diagonal degree matrix) of the
graph. Formally, Xl+1 = TXl. Similar to WL subtree kernel, PK compares two graphs at each iteration. The similarity
between two graphs is measured based on propagated features through binning. Formally we can write the kernel as

KPK(G,G′) =

L∑
l=0

〈φPK(XG
l ), φPK(XG′

l )〉 (4)

where φPK(·) denotes the hash function that maps a given set of (feature) vectors into bins. To preserve locality and keep
efficiency, locally sensitive hashing (LSH) (Gionis et al., 1999) is used for the binning.

Sparsification. The propagation kernel also exhibits the aforementioned sparsity problem, increasingly for larger number of
iterations. Compared to WL subtree kernel that generates new features via re-labeling (a hard transformation), propagation
kernel generates new features via multiplying by the transition matrix (a soft transformation). As such, the feature space
grows much slower for PK. As illustrated in Fig. 10, the diagonal dominance still holds while the sparsification occurs at a
lower rate than WL subtree kernel (cf. Fig. 1).
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Figure 10: Sparsification in PK: Pairwise similarity of graphs (from DD dataset) decreases with increasing number of iterations (left to
right).

A.2. Data Statistics

All datasets used in the experiments are repurposed from binary graph classification datasets, their statistics are summarized
in Table 2.

Table 2: Dataset summary statistics.

Dataset GraphType Class #Graphs #NodeLabels Avg. #Nodes Avg. #Edges Avg. Degree

DD Labeled 0 691 89 355.2 1806.6 5.04
1 487 89 183.7 898.8 4.88

PROTEINS Labeled 0 663 3 50 188.1 3.79
1 450 3 22.9 83.1 3.64

NCI1 Labeled 0 2053 37 25.65 55.3 2.15
1 2057 37 34.07 73.9 2.17

IMDB Degree-Labeled 0 500 136 20.1 193.5 9.1
1 500 136 19.4 192.5 8.6

A.3. Model Configuration

Our experiments are based on two-stage models WL+LOF and PK+LOF, as well as end-to-end deep-one-class model
OCGIN. We study the behavior of these models under different number of propagations; specifically WL and PK iterations
range from 1 to 11, and OCGIN embeddings are extracted from layers 0 (i.e. input node vectors) through 5. PK has a
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bin-width hyperparameter for hash function φPK (See Eq. 4), which is set to 0.1. Note that smaller bin-width leads to faster
sparsification with a more severe performance flip. The LOF outlier detector is setup with default parameters (k =20 number
of neighbors, leaf size 30) from scikit-learn (Pedregosa et al., 2011). For OCGIN we use the default GIN implementation
from (Xu et al., 2019), where we remove bias terms at all layers to prevent feature collapse (Ruff et al., 2018). A graph’s
representation is produced from the summation of all previous layers’ hidden representations, with a mean pooling over
all nodes in the graph. Note that we train OCGIN only on down-sampled variants of a dataset, as it is trained end-to-end
assuming outliers to be minority. For figures utilizing full data, we simply feed-forward all the graphs in the database over
the trained model. We set number of layers to L = 5 and number of hidden units to 128 for all datasets. We use the Adam
optimizer (Kingma & Ba, 2014) to train OCGIN with a 5 · 10−4 L2 penalty on weights. The model is trained for 25 epochs.
All other hyperparameters are picked from typical/default values, since our goal is to illustrate the performance flip and
related issues instead of achieving best performance. Hyperparameter selection for unsupervised deep outlier detection is an
important problem which is outside the scope of this paper.

A.4. Pairwise Similarity

Our proposed measures in Sec. 3.3 are computed on top of pairwise similarities among all graphs. For PK and WL kernels,
the normalized kernel matrix is investigated. For OCGIN, where we only have access to graph embeddings, we calculate
pairwise similarity as (1 - normalized pairwise distance) between two graphs, using Euclidean distance (i.e. L2 norm).
Similarity matrix is normalized to range [0, 1] via dividing it by the largest element in the matrix.

A.5. Additional Results for Observation 2
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Figure 11: Full version of Figure 2, performance is invariant to downsampling rate on DD, PROTEINS, and NCI1 for WL+LOF.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Outlier downsampling rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ou
tli

er
 d

et
ec

tio
n 

RO
C-

AU
C

Propagation iteration = 5

class 1 as outlier
class 0 as outlier

(a) DD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Outlier downsampling rate

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ou
tli

er
 d

et
ec

tio
n 

RO
C-

AU
C

Propagation iteration = 5
class 1 as outlier
class 0 as outlier

(b) PROTEINS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Outlier downsampling rate

0.3

0.4

0.5

0.6

0.7

Ou
tli

er
 d

et
ec

tio
n 

RO
C-

AU
C

Propagation iteration = 5

class 1 as outlier
class 0 as outlier

(c) NCI1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Outlier downsampling rate

0.50

0.55

0.60

0.65

0.70

Ou
tli

er
 d

et
ec

tio
n 

RO
C-

AU
C

Propagation iteration = 5
class 1 as outlier
class 0 as outlier

(d) IMDB
Figure 12: Performance is invariant to downsampling rate on DD, PROTEINS, and NCI1 for PK+LOF.
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Figure 13: Performance is invariant to downsampling rate on DD, PROTEINS, and NCI1 for OCGIN.
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A.6. Additional Results for Observation 3

We have observed that performance gap between two variants of repurposed graph classification datasets tends to grow with
increasing number of propagations on WL (Figure 14) and PK (Figure 15) in DD, PROTEINS, and NCI1, while not for
IMDB. However this observation does not hold for OCGIN, which could because of the training procedure (shown in Figure
16).
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(d) IMDB
Figure 14: Full version of Figure 3, performance gap between two variants tends to grow with increasing number of propagations (i.e.
iterations) of WL (subsequently paired with LOF), significantly on DD, PROTEINS, and NCI1.
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Figure 15: Performance gap between two variants tends to grow with increasing number of propagations (i.e. iterations) of PK
(subsequently paired with LOF), significantly on DD, PROTEINS, and NCI1.
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Figure 16: Performance gap between two variants of datasets for OGCIN
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A.7. Additional Measures on DD, PROTEIN and NCI

A.7.1. DD

We show the designed measures for pairwise similarity of all graphs in DD dataset, using WL kernel (Figure 17), PK kernel
(Figure 18), and OCGIN (Figure 19).
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Figure 17: Measures for full pairwise similarity of all graphs on DD dataset with WL+LOF
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Figure 18: Measures for full pairwise similarity of all graphs on DD dataset with PK+LOF
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Figure 19: Measures for full pairwise similarity of all graphs on DD dataset with OCGIN (trained for 25 epochs)

A.7.2. PROTEINS

We show the designed measures for pairwise similarity of all graphs in PROTEINS dataset, using WL kernel (Figure 20),
PK kernel (Figure 21), and OCGIN (Figure 22).
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Figure 20: Measures for full pairwise similarity of all graphs on PROTEINS dataset with WL+LOF



Issues with Propagation Based Models for Graph-Level Outlier Detection

Class 0  |  Class 1

All-graph similarity matrix

Cl
as

s 1
  |

  C
la

ss
 0

iter=1
Class 0  |  Class 1

All-graph similarity matrix

Cl
as

s 1
  |

  C
la

ss
 0

iter=3
Class 0  |  Class 1

All-graph similarity matrix

Cl
as

s 1
  |

  C
la

ss
 0

iter=5
Class 0  |  Class 1

All-graph similarity matrix

Cl
as

s 1
  |

  C
la

ss
 0

iter=7
Class 0  |  Class 1

All-graph similarity matrix

Cl
as

s 1
  |

  C
la

ss
 0

iter=9
Class 0  |  Class 1

All-graph similarity matrix

Cl
as

s 1
  |

  C
la

ss
 0

iter=11

0.25 0.00 0.25 0.50

0.4

0.2

0.0

0.2

0.4

0.6
MDS visualization

Class 0
Class 1

0.5 0.0 0.5

0.4

0.2

0.0

0.2

0.4

MDS visualization
Class 0
Class 1

0.5 0.0 0.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75
MDS visualization

Class 0
Class 1

0.50 0.25 0.00 0.25 0.50

0.75

0.50

0.25

0.00

0.25

0.50

0.75

MDS visualization

Class 0
Class 1

0.5 0.0 0.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

MDS visualization
Class 0
Class 1

0.5 0.0 0.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

MDS visualization

Class 0
Class 1

0.0 0.2 0.4 0.6 0.8 1.0
Radius of 20-NN

0

100

200

300

400

500

600

Nu
m

be
r o

f g
ra

ph
s

Class 0
Class 1

0.0 0.2 0.4 0.6 0.8 1.0
Radius of 20-NN

0

50

100

150

200

Nu
m

be
r o

f g
ra

ph
s

Class 0
Class 1

0.0 0.2 0.4 0.6 0.8 1.0
Radius of 20-NN

0

20

40

60

80

Nu
m

be
r o

f g
ra

ph
s

Class 0
Class 1

0.0 0.2 0.4 0.6 0.8 1.0
Radius of 20-NN

0

20

40

60

80

100

120

140

Nu
m

be
r o

f g
ra

ph
s

Class 0
Class 1

0.0 0.2 0.4 0.6 0.8 1.0
Radius of 20-NN

0

20

40

60

80

100

Nu
m

be
r o

f g
ra

ph
s

Class 0
Class 1

0.0 0.2 0.4 0.6 0.8 1.0
Radius of 20-NN

0

20

40

60

80

100

Nu
m

be
r o

f g
ra

ph
s

Class 0
Class 1

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

Class 0
Class 1

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

Class 0
Class 1

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

Class 0
Class 1

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

Class 0
Class 1

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

Class 0
Class 1

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

Class 0
Class 1

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Full data pairwise similarity visualization

Figure 21: Measures for full pairwise similarity of all graphs on PROTEINS dataset with PK+LOF
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Full data pairwise similarity visualization (trained 25 epochs on downsampled(c=1) dataset)

Figure 22: Measures for full pairwise similarity of all graphs on PROTEINS dataset with OCGIN (trained for 25 epochs)

A.7.3. NCI1

We show the designed measures for pairwise similarity of all graphs in NCI1 dataset, using WL kernel (Figure 23), PK
kernel (Figure 24), and OCGIN (Figure 25).
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Figure 23: Measures for full pairwise similarity of all graphs on NCI1 dataset with WL+LOF
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Figure 24: Measures for full pairwise similarity of all graphs on NCI1 dataset with PK+LOF
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Figure 25: Measures for full pairwise similarity of all graphs on NCI1 dataset with OCGIN (trained for 25 epochs)
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A.8. Additional Measures on Downsampled DD, PROTEIN and NCI

A.8.1. DD

We analyze the pairwise similarity of graphs on two variants of down-sampled DD dataset, by showing the distribution
of NN-Disagreement% (measures shown in sec.3.3) and corresponding ROC-AUC. The analysis is conducted for three
methods: WL+LOF (Figure 26), PK+LOF (Figure 27), and OCGIN (Figure 28).
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Figure 26: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on DD with WL+LOF.
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Figure 27: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on DD with PK+LOF.
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Figure 28: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on DD with OCGIN.
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A.8.2. PROTEINS

We analyze the pairwise similarity of graphs on two variants of down-sampled PROTEINS dataset, by showing the
distribution of NN-Disagreement% (measures shown in sec.3.3) and corresponding ROC-AUC. The analysis is conducted
for three methods: WL+LOF (Figure 29), PK+LOF (Figure 30), and OCGIN (Figure 31).
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Figure 29: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on PROTEINS with WL+LOF.
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Figure 30: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on PROTEINS with PK+LOF.
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Figure 31: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on PROTEINS with OCGIN.
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A.8.3. NCI1

We analyze the pairwise similarity of graphs on two variants of down-sampled NCI1 dataset, by showing the distribution
of NN-Disagreement% (measures shown in sec.3.3) and corresponding ROC-AUC. The analysis is conducted for three
methods: WL+LOF (Figure 32), PK+LOF (Figure 33), and OCGIN (Figure 34).

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

2

4

6

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=1, roc=0.564

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

5

10

15

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=3, roc=0.699

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

5

10

15

20

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=5, roc=0.727

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

5

10

15

20

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=7, roc=0.748

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

5

10

15

20

25

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=9, roc=0.760

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

5

10

15

20

25

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=11, roc=0.769

Inlier
Outlier

Class 1 as outlier with its downsampling rate =0.1

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

2

4

6

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=1, roc=0.491

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

1

2

3

4

5

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=3, roc=0.383

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

1

2

3

4

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=5, roc=0.360

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0

1

2

3

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=7, roc=0.348

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=9, roc=0.342

Inlier
Outlier

0.00 0.25 0.50 0.75 1.00
Disagree% in 20-NN

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f g
ra

ph
s (

sm
oo

th
ed

 d
en

sit
y)

iter=11, roc=0.336

Inlier
Outlier

Class 0 as outlier with its downsampling rate =0.1

Figure 32: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on NCI1 with WL+LOF.
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Figure 33: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on NCI1 with PK+LOF.
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Figure 34: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on NCI1 with OCGIN.
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A.9. Additional Measures on IMDB

Different from DD, PROTEINS, and NCI1, IMDB is the only dataset we haven’t observe all peculiar observations (mentioned
in sec.3.1), and we have shown analysis for WL+LOF on this dataset in sec.4.2. Now we present similar measures and
analysis for PK+LOF (Figure 35 and Figure 36) and OCGIN (Figure 37 and Figure 38).
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Figure 35: (Top row) Pairwise similarity matrix for all graphs in full IMDB-BINARY dataset, based on PK kernel over increasing
iterations (left to right). (Second row) 2-d MDS visualization based on the similarity matrix. (Third row) Distribution of NN-Radius for all
graphs in each class. (Last row) Distribution of NN-Disagreement% for all graphs in each class.
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Figure 36: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on IMDB-BINARY with PK+LOF.
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Full data pairwise similarity visualization (trained 25 epochs on downsampled(c=1) dataset)

Figure 37: (Top row) Pairwise similarity matrix for all graphs in full IMDB-BINARY dataset, based on OCGIN over increasing iterations
(left to right). (Second row) 2-d MDS visualization based on the similarity matrix. (Third row) Distribution of NN-Radius for all graphs in
each class. (Last row) Distribution of NN-Disagreement% for all graphs in each class.
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Figure 38: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled and bottom row: class 0 is down-sampled, in
red) and inliers (vice versa, in blue) over iterations (left to right) on IMDB-BINARY with OCGIN.



Issues with Propagation Based Models for Graph-Level Outlier Detection

A.10. Discussion of Impact on Outlier Detection

Most traditional outlier detectors are designed for low-dimensional point-cloud (i.e. vector) datasets based on specific
assumptions of the behavior in input space. With the emergence of large-scale high-dimensional and highly structured data
such as images, text, time series, and so on (e.g. in medical records), deep anomaly detection has emerged as a promising
area of research (Chalapathy & Chawla, 2019; Ruff et al., 2020; Pang et al., 2020). Irrespectively, most detection models
assume outliers to ‘live’ in low-density regions of the space. In contrast, as our findings reveal, repurposing classification
datasets for outlier model evaluation often creates a setting in which this assumption is violated. In fact the setting in which
the so-called outlier samples form a higher density region than the inliers is studied under a different area called rare category
discovery (He, 2012).

Moreover, our findings have a close connection with graph representations as generated by propagation based models. This
motivates the design of better graph representation learning techniques for outlier detection, particularly those that do not
exhibit similar pitfalls.

Our study focused on binary graph classification datasets, however the issues would arguably extend to multi-class scenarios
where two or more classes are subsampled to construct the outliers. Although the possibility of all down-sampled classes
to violate the sparsity assumption would be reduced, the model errors could still be biased (i.e. skewed) toward the ones
that exhibit the issues we have reported. Finally, more research is called for the transferability of our findings to non-graph
settings.


