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The Big Picture
Networks
— This paper

What is over smoothing? Any measures?
How to solve or relieve it for any GNNs?
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Graph-Based SSL
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Agenda

e Background
* Graph-based semi-supervised learning
* Modern approach: graph neural networks
* Oversmoothing problem of GNN

* Understanding oversmoothing
* PairNorm: tackling oversmoothing
* Semi-supervised node classification with missing feature
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Background: SSL
* Semi Supervised Learning (SSL)
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Background: SSL
* Why SSL works: assumptions link P(X) and P(Y | X)

: /
—— Supervised algorithm decision boundary
---- Optimal decision boundary
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(@) Smoothness and low-density assumptions.

(b) Manifold assumption.
Borrowed from https://link.springer.com/content/pdf/10.1007/s10994-019-
05855-6.pdf
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https://link.springer.com/content/pdf/10.1007/s10994-019-05855-6.pdf

Background: Graph-Based SSL

» Additional information: Graph

» Example: Political blog citations
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Background: Graph-Based SSL

e Given
e Set L of labeled nodes with attributes
* Set U of unlabeled nodes with attributes
* A graph A of all nodes

* Goal
* Assign label Y to all unlabeled nodes in U

* Old approaches

* Label Propagation [Zhu 03]
 Deep Walk [Perozzi 14]

* |terative Classification [Lu O3]
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Modern Solution: Graph Convolutional Network

* Neural Network
e Stacking of linear layer followed by nonlinear activation

HY = o(HOW® 4 p0) [W, b are Params]
* Graph Convolutional Neural Network (GCN) [Kipf 17]
e Stacking of GraphConv layer followed by nonlinear activation
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Modern Solution: Graph Convolutional Network

* GraphConv: Micro Perspective  (E+D)
HHD = g(AHOW® 4 p®) m) h(”l) o(W® z J )

1-hop neighbors of i

e Stacking k layers expand the receptive field to k-hop neighbors!
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Other variants of GNN

* Graph Attention Network [Velickovic et al., 2018]
 GraphSAGE [Hamilton et al., 2017]

* Deep graph infomax [Velickovic et al., 2019]

 Graph Markov Neural Networks [Qu et al., 2019]

Refer to a good survey of GNN:

Wu, Zonghan et al., arXiv preprint arXiv:1901.00596 (2019).
A comprehensive survey on graph neural networks.
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Apply GCN to SSL
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Oversmoothing problem: view 1

* Intuition: More layers => larger receptive fields => more information
* Observation: hurt the performance (after more than 2~3 layers)?
* Why?

1. More parameters => overfitting

2. More layers => vanishing gradient => hard to train
3. Oversmoothing of graph convolution operation [our focus]

e Recall that in GCN:

Intuitively, keeping aggregating

hitl = o(w Y ieN;uLi) L_®¥)" " information from neighbors can make
‘ \[IW all nodes indistinguishable!

Node-wise oversmoothing
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Node-wise oversmoothing
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Oversmoothing problem: view 2

* Different view from matrix form (ignoring parameters)
Hl+1 — A" Hl
m

— HV=4A" go=74" x

» There is a stationary distribution for ﬁsym if viewing it as
transition matrix of random walk. Feature-wise oversmoothing
Let x.; € R™ denote the j-th column of X. Then, for any x.; € R™:

. Yy 7L
Jim AS.x;=m; and —~
—» 00

w € R"™ satisfies w; = ZV. ‘:/6117 foralli € [n]. Typo: x.j € R"
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Feature-wise oversmoothing

All features are same
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Oversmoothing washes away the original features!
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Agenda

* Background

* Understanding oversmoothing
* Focusing on oversmoothing: via SGC
 Measures: row-diff and col-diff
* Results for semi-supervised node classification(SSNC) problem

* PairNorm: tackling oversmoothing
* Semi-supervised node classification with missing feature
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Simplified graph convolutional network (SGC)

* SGC [Wu et al., 2019]

ol _ F l
Graph convolution: H —AsymH

Readout: 0 = Softmax(HYW")

* Removing parameters and activation functions of GCN
Add a linear transformation in readout

* Achieve similar result as GCN for SSL
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Focusing on oversmoothing: via SGC

* Recall reasons:
1. More parameters => overfitting
2. More layers => vanishing gradient => hard to train
3. Oversmoothing of graph convolution operation

* To decouple oversmoothing from other factors, we study the
oversmoothing problem using SGC model. [Wu et al., 2019]

AN

Y = softmax(AX X W)

sym

i. No effect of overfiiting: fixed number of parameters
ii. No effect of vanishing gradient: not a "deep” model
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Measures: row-diff and col-diff

* Row-diff: measuring node-wise oversmoothing

k k
row-diff(H®)) = n2 3 h® - h®

2
i,JE[n]
* Col-diff: measuring feature-wise oversmoothing
: k k k k
coldiff(H®) = — 3™ [6® /] ~ b /)

1,7 €[d]
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Measuring oversmoothing effect
e Data: Cora, random split with 3%train, 10%valiation, 87% test

* Model: SGC
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* Learning harder materials makes you perform better in exam! But
[Human learning perspective] 2

can not be too hard!
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Measuring oversmoothing level

e Cora dataset: random split with 3%train, 10%valiation, 87% test
6 =
— row_diff | ©040° — col_diff
5 - 0.35 -
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 Both node-wise and feature-wise oversmoothing are happening
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Agenda

* Background
* Understanding oversmoothing

* PairNorm: tackling oversmoothing
* PairNorm: normalizing total pairwise distance
e Effective of SGC+PairNorm over SSNC problem

* Semi-supervised node classification with missing feature
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PairNorm: normalizing pairwise squared distance

* Design: Normalization layer after GraphConv

* Intuition: keep total pairwise squared distance (TPSD) constant
across layers to prevent node-wise oversmoothing. Combining with
GraphConv can push away pairs that are not connected.

* Notation:
X :input of GraphConv

~

X: input of PairNorm, also the output of GraphConv
X : output of PairNorm

TPSD(X) := 3, i II%i — X513
 Goal:

TPSD(X) = TPSD(X)
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PairNorm: normalizing pairwise squared distance
» TPSD pairwise calculation: O(n?d) complexity.

 Notice that TPSD can be rewritten as:

1 - 1 -
TPSDX) = 3 % - %18 = 207( D Il - 1 Yo%l )
1=1 =1

i,j€[n]
* First term: the mean squared length of node representations

* Second term: the squared length of node representations
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PairNorm

e Operations of PairNorm: Center-and-Scale

1 n
X; = X; — - E X; (Center)
i=1

- C
X

x ¢
;i = 8- = sv/n - E
NESSERE VIXellz

o After PairNorm:

(Scale)

X

X := PAIRNORM(X) has row-wise mean O (i.e., is centered)
And TPSD(X) — 2n|\X\|% — 9n?g2 , where s is a hyperparameter.
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PairNorm

* Visualizing the procedure of PairNorm:

SRR SRR PairNorm ------------------ .
X X p X© b X
graph conv center rescale
: — - — — >
—> : —>
O
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Effective of SGC+PairNorm over SSNC problem

e Cora dataset: random split with 3%train, 10%valiation, 87% test
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Effective of SGC+PairNorm over SSNC problem

e Cora dataset: random split with 3%train, 10%valiation, 87% test
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Effective of GCN/GAT+PairNorm

* Cora dataset: original split with 5%train, 10%valiation, 85% test

cora-GCN cora-GAT
1.0 - — PairNorm(Sl) 1.0 1 —— train_acc
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Agenda

* Background
* Understanding oversmoothing
* PairNorm: tackling oversmoothing

* Semi-supervised node classification with missing feature
* Definition and real-world applications
 Effective of SGC+PairNorm over SSNC with missing feature
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SSNC with missing feature

* GNN achieves best performance for SSNC problem with only 2~3
layers, where oversmoothing is not really happened.

* The ceiling performance of GNN over SSNC problem is not affected
by oversmoothing problem.

* To demonstrate the ability of PairNorm, we investigate a new
setting: SSNC with missing feature

* Assume that a certain percentage (randomly) of nodes don’t have
feature - their features are missing due to privacy protection or
limited records.
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SSNC with missing feature (SSNC-MF)

* Real-world applications

1. Credit lending problem of identifying low- vs high-risk
customers.
2. Cold-start problem for graph structured data

3. Privacy protection: company can only reveals a small fraction
of data.

* To our knowledge, this is the first work to study SSNC with
missing feature using GNN models.
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Effective of SGC/GAT/GCN+PairNorm over SSNC-MF

» Cora dataset, original split. 100% missing of validation and test set.

cora-SGC cora-GCN cora-GAT

—— PairNorm(Sl) 1.0 —— train_acc
--- Original val_acc
test _acc

The green diamond represent where we get highest validation accuracy
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More results of SGC+PairNorm

Table 1: Comparison of ‘vanilla’ vs. PAIRNORM-enhanced SGC performance in Cora, Citeseer,
Pubmed, and CoauthorCs for SSNC-MV problem, with missing rate ranging from 0% to 100%.
Showing test accuracy at # L (K in Eq. @) layers, at which model achieves best validation accuracy.

Missing Percentage 0% 20% 40% 60% 80% 100%
Dataset Method Acc #L.| Acc #L| Acc #L| Acc #L| Acc #L| Acc #L
cor SGC |0.815 4|0.806 5|0.786 3|0.742 4|0.733 3|0.423 15

ora SGC-PN|0.811 7/0.799 7/0.797 7/0.783 20|0.780 25|0.745 40
it SGC |0.689 10/0.684 6/0.668 8|0.657 9]/0.565 8|0.290 2
LLESESL SGC-PN|[0.706 3]0.695 3[0.653 4|0.641 5/0.590 50|0.486 50
b ubmed SGC |0.754 1]|0.748 1]|0.723 4|0.746 2]0.659 3]0.399 35
ubme SGC-PN[0.782 9/0.781 7/0.778 60/0.782 7/0.772 60/0.719 40
conuthorcs SGC 0914 110898 2/0.877 2(0.824 2[0.751 4]0.318 2
Cautio SGC-PN 0915 2/0.909 2/0.899 3/0.891 4/0.880 8|0.860 20
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Summary

* Defined and measured oversmoothing effect
* A better understanding of GNNs (still immature area)

* Proposed solution: PairNorm
» Solid theoretical analysis over SGC
* General "patch” for any GNN layers
* First normalization layer designed for GNN

* First one to investigate a new scenario, SSL with missing
feature, in GNN area.
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