PairNorm: Tackling Oversmoothing in GNNS

Appearing in ICLR 2020: International Conference on Learning Representations

Lingxiao Zhao, Leman Akoglu

Carnegie Mellon University

The Big Picture

2

Agenda

Background

- Graph-based semi-supervised learning
- Modern approach: graph neural networks
- Oversmoothing problem of GNN
- Understanding oversmoothing
- PairNorm: tackling oversmoothing
- Semi-supervised node classification with missing feature

Background: SSL

Semi Supervised Learning (SSL)

Background: SSL

• Why SSL works: assumptions link P(X) and P(Y|X)

(a) Smoothness and low-density assumptions.

(b) Manifold assumption.

Background: Graph-Based SSL

Additional information: Graph

6

Carnegie Mellon University

• Example: Political blog citations

Background: Graph-Based SSL

- Given
 - Set L of labeled nodes with attributes
 - Set U of unlabeled nodes with attributes
 - A graph A of all nodes
- Goal
 - Assign label Y to all unlabeled nodes in U
- Old approaches
 - Label Propagation [Zhu 03]
 - Deep Walk [Perozzi 14]
 - Iterative Classification [Lu 03]

Modern Solution: Graph Convolutional Network

- Neural Network
 - Stacking of linear layer followed by nonlinear activation

$$H^{(t+1)} = \sigma(H^{(t)}W^{(t)} + b^{(t)}) \qquad [W, b \text{ are Params}]$$

8

- Graph Convolutional Neural Network (GCN) [Kipf 17]
 - Stacking of GraphConv layer followed by nonlinear activation $H^{(t+1)} = \sigma(\tilde{A}H^{(t)}W^{(t)} + b^{(t)})$

Modern Solution: Graph Convolutional Network

9

Carnegie Mellon University

Stacking k layers expand the receptive field to k-hop neighbors!

Other variants of GNN

- Graph Attention Network [Velickovic et al., 2018]
- GraphSAGE [Hamilton et al., 2017]
- Deep graph infomax [Velickovic et al., 2019]
- Graph Markov Neural Networks [Qu et al., 2019]

• ...

Refer to a good survey of GNN:

Wu, Zonghan et al., arXiv preprint arXiv:1901.00596 (2019).

A comprehensive survey on graph neural networks.

Apply GCN to SSL

Oversmoothing problem: view 1

- Intuition: More layers => larger receptive fields => more information
- Observation: hurt the performance (after more than 2~3 layers)?
- Why?
 - 1. More parameters => overfitting
 - 2. More layers => vanishing gradient => hard to train
 - 3. Oversmoothing of graph convolution operation [our focus]
- Recall that in GCN:

 $h_i^{l+1} = \sigma(W'\sum_{j\in N_i\cup\{i\}} \frac{h_j^l}{\sqrt{|N_i||N_j|}})$

Intuitively, keeping aggregating information from neighbors can make all nodes indistinguishable!

Carnegie Mellon University

12

Node-wise oversmoothing

Node-wise oversmoothing

Carnegie Mellon University

Oversmoothing problem: view 2

• Different view from matrix form (ignoring parameters)

$$H^{l+1} = \widetilde{A}_{sym} H^{l}$$

$$\implies H^{N} = \widetilde{A}_{sym}^{N} H^{0} = \widetilde{A}_{sym}^{N} X$$

• There is a stationary distribution for \widetilde{A}_{sym} , if viewing it as transition matrix of random walk. Feature-wise oversmoothing

Let
$$\mathbf{x}_{.j} \in \mathbb{R}^n$$
 denote the *j*-th column of \mathbf{X} . Then, for any $\mathbf{x}_{.j} \in \mathbb{R}^n$:
 $\lim_{k \to \infty} \tilde{\mathbf{A}}_{sym}^k \mathbf{x}_{.j} = \pi_j \text{ and } \frac{\pi_j}{\|\pi_j\|_1} = \pi$,
 $\pi \in \mathbb{R}^n$ satisfies $\pi_i = \frac{\sqrt{deg_i}}{\sum_i \sqrt{deg_i}}$ for all $i \in [n]$. Typo: $x_{.j} \in \mathbb{R}^{+n}$

Feature-wise oversmoothing

Oversmoothing washes away the original features!

15

Agenda

- Background
- Understanding oversmoothing
 - Focusing on oversmoothing: via SGC
 - Measures: row-diff and col-diff
 - Results for semi-supervised node classification(SSNC) problem
- PairNorm: tackling oversmoothing
- Semi-supervised node classification with missing feature

Simplified graph convolutional network (SGC)

• SGC [Wu et al., 2019]

Graph convolution: $H^{l+1} = \widetilde{A}_{sym} H^l$ Readout: $O = Softmax(H^N W^N)$

- Removing parameters and activation functions of GCN Add a linear transformation in readout
- Achieve similar result as GCN for SSL

Focusing on oversmoothing: via SGC

- Recall reasons:
 - 1. More parameters => overfitting
 - 2. More layers => vanishing gradient => hard to train
 - 3. Oversmoothing of graph convolution operation
- To decouple oversmoothing from other factors, we study the oversmoothing problem using SGC model. [Wu et al., 2019] $\widehat{Y} = \operatorname{softmax}(\widetilde{\mathbf{A}}_{\operatorname{sym}}^{K} \mathbf{X} \mathbf{W})$
 - i. No effect of overfiiting: fixed number of parameters
 - ii. No effect of vanishing gradient: not a "deep" model

Measures: row-diff and col-diff

• Row-diff: measuring node-wise oversmoothing

$$\operatorname{row-diff}(\mathbf{H}^{(k)}) = \frac{1}{n^2} \sum_{i,j \in [n]} \left\| \mathbf{h}_i^{(k)} - \mathbf{h}_j^{(k)} \right\|_2$$

Col-diff: measuring feature-wise oversmoothing

$$\text{col-diff}(\mathbf{H}^{(k)}) = \frac{1}{d^2} \sum_{i,j \in [d]} \left\| \mathbf{h}_{\cdot i}^{(k)} / \| \mathbf{h}_{\cdot i}^{(k)} \|_1 - \mathbf{h}_{\cdot j}^{(k)} / \| \mathbf{h}_{\cdot j}^{(k)} \|_1 \right\|_2$$

Carnegie Mellon University

Measuring oversmoothing effect

- Data: Cora, random split with 3%train, 10%valiation, 87% test
- Model: SGC

• Learning harder materials makes you perform better in exam! But can not be too hard! [Human learning perspective]

Measuring oversmoothing level

• Cora dataset: random split with 3%train, 10%valiation, 87% test

Both node-wise and feature-wise oversmoothing are happening

21

Agenda

- Background
- Understanding oversmoothing
- PairNorm: tackling oversmoothing
 - PairNorm: normalizing total pairwise distance
 - Effective of SGC+PairNorm over SSNC problem
- Semi-supervised node classification with missing feature

PairNorm: normalizing pairwise squared distance

- **Design:** Normalization layer after GraphConv
- Intuition: keep total pairwise squared distance (TPSD) constant across layers to prevent node-wise oversmoothing. Combining with GraphConv can push away pairs that are not connected.
- Notation:
 - ${\bf X}$: input of GraphConv
 - $\mathbf{ ilde{X}}$: input of PairNorm, also the output of GraphConv
 - $\dot{\mathbf{X}}$: output of PairNorm

$$extsf{TPSD}(\mathbf{\dot{X}}) := \sum_{i,j \in [n]} \|\mathbf{\dot{x}}_i - \mathbf{\dot{x}}_j\|_2^2$$

• Goal:

$$TPSD(\mathbf{X}) = TPSD(\mathbf{\dot{X}})$$

23

PairNorm: normalizing pairwise squared distance

- TPSD pairwise calculation: $\mathcal{O}(n^2d)$ complexity.
- Notice that TPSD can be rewritten as:

$$\text{TPSD}(\tilde{\mathbf{X}}) = \sum_{i,j\in[n]} \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2^2 = 2n^2 \left(\frac{1}{n} \sum_{i=1}^n \|\tilde{\mathbf{x}}_i\|_2^2 - \|\frac{1}{n} \sum_{i=1}^n \tilde{\mathbf{x}}_i\|_2^2\right)$$

- First term: the mean squared length of node representations
- Second term: the squared length of node representations

Carnegie Mellon University

PairNorm

• Operations of PairNorm: Center-and-Scale

• After PairNorm:

 $\dot{\mathbf{X}} := \text{PAIRNORM}(\tilde{\mathbf{X}})$ has row-wise mean 0 (i.e., is centered) And $\text{TPSD}(\dot{\mathbf{X}}) = 2n \|\dot{\mathbf{X}}\|_F^2 = 2n^2 s^2$, where s is a hyperparameter.

25

PairNorm

• Visualizing the procedure of PairNorm:

Effective of SGC+PairNorm over SSNC problem

• Cora dataset: random split with 3%train, 10%valiation, 87% test

Effective of SGC+PairNorm over SSNC problem

• Cora dataset: random split with 3%train, 10%valiation, 87% test

Carnegie Mellon University

Effective of GCN/GAT+PairNorm

• Cora dataset: original split with 5%train, 10%valiation, 85% test

Agenda

- Background
- Understanding oversmoothing
- PairNorm: tackling oversmoothing
- Semi-supervised node classification with missing feature
 - Definition and real-world applications
 - Effective of SGC+PairNorm over SSNC with missing feature

SSNC with missing feature

- GNN achieves best performance for SSNC problem with only 2~3 layers, where **oversmoothing** is not really happened.
- The ceiling performance of GNN over SSNC problem is not affected by oversmoothing problem.
- To demonstrate the ability of PairNorm, we investigate a new setting: SSNC with missing feature
- Assume that a certain percentage (randomly) of nodes don't have feature – their features are missing due to privacy protection or limited records.

SSNC with missing feature (SSNC-MF)

- Real-world applications
 - 1. Credit lending problem of identifying low- vs high-risk customers.
 - 2. Cold-start problem for graph structured data
 - 3. Privacy protection: company can only reveals a small fraction of data.
 - 4.
- To our knowledge, this is the first work to study SSNC with missing feature using GNN models.

Effective of SGC/GAT/GCN+PairNorm over SSNC-MF

• Cora dataset, original split. 100% missing of validation and test set.

The green diamond represent where we get highest validation accuracy

33

More results of SGC+PairNorm

Table 1: Comparison of 'vanilla' vs. PAIRNORM-enhanced SGC performance in Cora, Citeseer, Pubmed, and CoauthorCS for SSNC-MV problem, with missing rate ranging from 0% to 100%. Showing test accuracy at #L (K in Eq. 4) layers, at which model achieves best validation accuracy.

Missing Percentage		0%		20%		40%		60%		80%		100%	
Dataset	Method	Acc	#L	Acc	#L	Acc	#L	Acc	#L	Acc	#L	Acc	#L
Cora	SGC SGC-PN	0.815 0.811	4 7	0.806 0.799	5 7	0.786 0.797	3 7	0.742 0.783	4 20	0.733 0.780	3 25	0.423 0.745	15 40
Citeseer	SGC SGC-PN	0.689 0.706	10 3	0.684 0.695	6 3	0.668 0.653	8 4	0.657 0.641	9 5	0.565 0.590	8 50	0.290 0.486	2 50
Pubmed	SGC SGC-PN	0.754 0.782	1 9	0.748 0.781	1 7	0.723 0.778	4 60	0.746 0.782	2 7	0.659 0.772	3 60	0.399 0.719	35 40
CoauthorCS	SGC SGC-PN	0.914 0.915	1 2	0.898 0.909	2 2	0.877 0.899	2 3	0.824 0.891	2 4	0.751 0.880	4 8	0.318 0.860	2 20

Summary

- Defined and measured oversmoothing effect
- A better understanding of GNNs (still immature area)
- Proposed solution: PairNorm
 - Solid theoretical analysis over SGC
 - General "patch" for any GNN layers
 - First normalization layer designed for GNN
- First one to investigate a new scenario, SSL with missing feature, in GNN area.

