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• Explicit, well defined graph 
• Limited and have noise
• Usually just connections (No weights) 
• “Right” graph for any tasks? No!

• Implicit graph
• Not given the data
• Need to be constructed based on domain knowledge
• Needed for lots of algorithms  

Question: how to learn a graph for a particular task, 
from raw, high-dimensional, and noisy data?

Motivation



• Semi-supervised Learning 

semi-supervised learning labeled+unlabeled data

Background: SSL

labeled data supervised learning 



• Given
• set L of labeled nodes
• set U of unlabeled nodes
• a graph W of all nodes

• Assign
• Label Y or Class Probability  F to unlabeled nodes

• Solution

Background: Graph-based SSL
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Our work di�ers from all existing graph construction algorithms
in the following aspects: (1) PG������ is a gradient-based task-
driven graph learning method, which aims to �nd an optimized
graph (evaluated over validation set) for a speci�c graph-based SSL
task; (2) PG������ achieves scalability over both dimensionality d
and sample size n in terms of runtime and memory. Speci�cally, it
has O (nd ) memory complexity and O (nd + n logn) computational
complexity for each gradient update. (3) Graph learning problem
typically has a very large search space with a non-convex optimiza-
tion objective, where initialization becomes extremely important.
To this end, we design an e�cient adaptive search framework out-
side the core of graph learning. �is is not explicitly addressed by
those prior work, whereas it is one of the key issues we focus on
through the ideas of relative performance and early-termination.

3 PRELIMINARIES AND BACKGROUND
3.1 Notation
Consider D := {(x1,�1), . . . , (x l ,�l ),x l+1, . . . ,x l+u }, a data sam-
ple in which the �rst l examples are labeled, i.e., x i 2 Rd has label
�i 2 Nc where c is the number of classes and Nc := {p 2 N⇤ |1 
p  c}. Let u := n � l be the number of unlabeled examples and
Y 2 Bn⇥c be a binary label matrix in which Y i j = 1 if and only if
x i has label �i = j.

�e semi-supervised learning task is to assign labels
{�l+1 . . . ,�l+u } to the unlabeled instances.

3.2 Graph Construction
A preliminary step to graph-based semi-supervised learning is
the construction of a graph from the point-cloud data. �e graph
construction process generates a graph G from D in which each
x i is a node of G. To generate a weighted matrixW 2 Rn⇥n from
G, one uses a similarity functionK : Rd ⇥Rd ! R to compute the
weightsW i j = K (x i ,x j ).

A widely used similarity function is the RBF (or Gaussian) kernel,
K (x i ,x j ) = exp(�kx i �x j k/(2� 2)), in which � 2 R⇤+ is the kernel
bandwidth parameter.

To sparsify the graph, two techniques are used most o�en. In �-
neighborhood (�N) graphs, there exists an undirected edge between
x i and x j if and only if K (x i ,x j ) � � , where � 2 R⇤+ is a free
parameter. � thresholding is prone to generating disconnected or
almost-complete graphs for an improper value of � . On the other
hand, in the k nearest neighbors (kNN) approach, there exists an
undirected edge between x i and x j if either x i or x j is one of the
k closest examples to the other. kNN approach has the advantage
of being robust to choosing an inappropriate �xed threshold.

In this work, we use a general kernel function that enables a
more �exible graph family, in particular

K (x i ,x j ) = exp
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where x im is themth component of x i . We denoteW i j = exp
⇣
�

(x i � x j )TA (x i � x j )
⌘
, where A := dia�(a) is a diagonal matrix

with Amm = am = 1/� 2
m , that corresponds to a metric in which

di�erent dimensions/features are given di�erent “weights”, which

allows a form of feature selection.1 In addition, we employ kNN
graph construction for sparsity.

Our goal is to learn both k as well as all the am ’s, by means of
which we aim to construct a graph that is suitable for the semi-
supervised learning task at hand.

3.3 Graph based Semi-Supervised Learning
Given the constructed graph G, a graph-based SSL algorithm uses
W and the label matrix Y to generate output matrix F by label
di�usion in the weighted graph. Note that this paper focuses on
the multi-class classi�cation problem, hence F 2 Rn⇥c .

�ere exist a number of SSL algorithms with various objectives.
Perhaps the most widely used ones include the Gaussian Random
Fields algorithm by Zhu et al. [30], Laplacian Support Vector Ma-
chine algorithm by Belkin et al. [1], and Local and Global Consis-
tency (LGC) algorithm by Zhou et al. [28].

�e topic of this paper is how to e�ectively learn the hyper-
parameters of graph construction. �erefore, we focus on how
the performance of a given recognized SSL algorithm can be im-
proved by means of learning the graph, rather than comparing the
performance of di�erent semi-supervised or supervised learning
algorithms. To this end, we use the LGC algorithm [28] which we
brie�y review here. It is easy to follow the same way to generalize
the graph learning ideas introduced in this paper for other popular
SSL algorithms, such as Zhu et al.’s [30] and Belkin et al.’s [1] that
have similar objectives to LGC, which we do not pursue further.

�e LGC algorithm solves the optimization problem

arg min
F 2Rn⇥c

tr ((F �Y )T (F �Y ) + �FT LF ) , (2)

where tr () denotes matrix trace, L := In � P is the normalized
graph Laplacian, such that In is the n-by-n identity matrix, P =
D�1/2WD�1/2, D := dia�(W 1n ) and 1n is the n-dimensional all-
1’s vector. Taking the derivative w.r.t. F and reorganizing the terms,
we would get the closed-form solution F = (In + �L)�1Y .

�e solution can also be found without explicitly taking any
matrix inverse and instead using the power method [11], as

(I + �L)F = Y )F + �F = �PF +Y ) F =
�

1 + �
PF +

1
1 + �

Y

) F (t+1)  µPF (t ) + (1 � µ )Y . (3)

3.4 Problem Statement
We address the problem of graph (structure) learning for SSL. Our
goal is to estimate, for a given task, suitable hyperparameters within
a �exible graph family. In particular, we aim to infer

• A, containing the bandwidths (or weights) am ’s for di�erent
dimensions in Eq. (1), as well as

• k , for sparse kNN graph construction;

so as to be�er align the graph structure with the underlying (hidden)
data manifold and the given SSL task.

1Se�ing A equal to (i) the identity, (ii) the (diagonal) variance, or (iii) the covari-
ance matrix would compute similarity based on Euclidean, normalized Euclidean, or
Mahalanobis distance, respectively.

L = I�D�1/2WD�1/2
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Closed-form

Iterative solution



What you would do for W?
Most typical way:
• Getting weights between pairs by  

their “similarity”,  using RBF kernel

• Sparsification
• ε-neighborhood
• kNN

• Hyperparameters: (!, ") or (!, k)
• Random search on cross validation 
• Grid search on cross validation

Graph-based SSL

• Two stages
• Graph construction (if not already present)
• Label Inference

Smoothness Assumption 
If two instances are similar 

according to the graph, then 
output labels should be similar
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W Matters!
“SSL algorithms are strongly affected by the graph 
sparsification parameter value and the choice of the 
adjacency graph construction and weighted matrix 
generation methods.”

Influence of Graph Construction on Semi-supervised Learning. 
Celso Andre R. de Sousa, Solange O. Rezende, Gustavo E. A. P. A. 
Batista. ECML/PKDD 2013.



Existing Solutions
• Unsupervised
• Locally Linear Embedding  [Roweis&Soul Science 2000]
• b-matching  [Jebara+ ICML 2009]
• Low-Rank Representation [Liu+ ICML 2010]
• Anchor Graph Regularization  [Wang+ TKDE 2016]

• Supervised
• Distance metric learning [Dhillon+ ACL 2010]
• Multiple kernel learning  [Li+ IJCAI 2016]
• Constrained self-representation [Zhuang+, Image Proc. 2017]
• …

No use of labels, not graph Learning

Not task-driven and/or scalable



Agenda
• Problem Introduction: 
• Motivation for Learning Graph
• Graph-based Semi-supervised Learning (SSL) 
• Existing Solution For Getting Graph for SSL

• PG-Learn: Parallel Graph Learning for SSL
• Gradient-based Graph Learning for SSL
• Adaptive Parallel Search 

• Empirical Evaluation
• Datasets & Baselines
• Result

Task-driven
Effective
Scalable
No hyperparameter to tune



Parameterize W More Generally 
• Single bandwidth is not enough
• Recall: 
• Different feature may prefer different bandwidth

•Dimension-specific kernel bandwidth

• Difficulty
• Number of parameters: d     can be more than thousands

random search / grid search won’t work   
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in the following aspects: (1) PG������ is a gradient-based task-
driven graph learning method, which aims to �nd an optimized
graph (evaluated over validation set) for a speci�c graph-based SSL
task; (2) PG������ achieves scalability over both dimensionality d
and sample size n in terms of runtime and memory. Speci�cally, it
has O (nd ) memory complexity and O (nd + n logn) computational
complexity for each gradient update. (3) Graph learning problem
typically has a very large search space with a non-convex optimiza-
tion objective, where initialization becomes extremely important.
To this end, we design an e�cient adaptive search framework out-
side the core of graph learning. �is is not explicitly addressed by
those prior work, whereas it is one of the key issues we focus on
through the ideas of relative performance and early-termination.

3 PRELIMINARIES AND BACKGROUND
3.1 Notation
Consider D := {(x1,�1), . . . , (x l ,�l ),x l+1, . . . ,x l+u }, a data sam-
ple in which the �rst l examples are labeled, i.e., x i 2 Rd has label
�i 2 Nc where c is the number of classes and Nc := {p 2 N⇤ |1 
p  c}. Let u := n � l be the number of unlabeled examples and
Y 2 Bn⇥c be a binary label matrix in which Y i j = 1 if and only if
x i has label �i = j.

�e semi-supervised learning task is to assign labels
{�l+1 . . . ,�l+u } to the unlabeled instances.

3.2 Graph Construction
A preliminary step to graph-based semi-supervised learning is
the construction of a graph from the point-cloud data. �e graph
construction process generates a graph G from D in which each
x i is a node of G. To generate a weighted matrixW 2 Rn⇥n from
G, one uses a similarity functionK : Rd ⇥Rd ! R to compute the
weightsW i j = K (x i ,x j ).

A widely used similarity function is the RBF (or Gaussian) kernel,
K (x i ,x j ) = exp(�kx i �x j k/(2� 2)), in which � 2 R⇤+ is the kernel
bandwidth parameter.

To sparsify the graph, two techniques are used most o�en. In �-
neighborhood (�N) graphs, there exists an undirected edge between
x i and x j if and only if K (x i ,x j ) � � , where � 2 R⇤+ is a free
parameter. � thresholding is prone to generating disconnected or
almost-complete graphs for an improper value of � . On the other
hand, in the k nearest neighbors (kNN) approach, there exists an
undirected edge between x i and x j if either x i or x j is one of the
k closest examples to the other. kNN approach has the advantage
of being robust to choosing an inappropriate �xed threshold.

In this work, we use a general kernel function that enables a
more �exible graph family, in particular

K (x i ,x j ) = exp
 
�

dX

m=1

(x im � x jm )2
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!
, (1)

where x im is themth component of x i . We denoteW i j = exp
⇣
�

(x i � x j )TA (x i � x j )
⌘
, where A := dia�(a) is a diagonal matrix

with Amm = am = 1/� 2
m , that corresponds to a metric in which

di�erent dimensions/features are given di�erent “weights”, which

allows a form of feature selection.1 In addition, we employ kNN
graph construction for sparsity.

Our goal is to learn both k as well as all the am ’s, by means of
which we aim to construct a graph that is suitable for the semi-
supervised learning task at hand.

3.3 Graph based Semi-Supervised Learning
Given the constructed graph G, a graph-based SSL algorithm uses
W and the label matrix Y to generate output matrix F by label
di�usion in the weighted graph. Note that this paper focuses on
the multi-class classi�cation problem, hence F 2 Rn⇥c .

�ere exist a number of SSL algorithms with various objectives.
Perhaps the most widely used ones include the Gaussian Random
Fields algorithm by Zhu et al. [30], Laplacian Support Vector Ma-
chine algorithm by Belkin et al. [1], and Local and Global Consis-
tency (LGC) algorithm by Zhou et al. [28].

�e topic of this paper is how to e�ectively learn the hyper-
parameters of graph construction. �erefore, we focus on how
the performance of a given recognized SSL algorithm can be im-
proved by means of learning the graph, rather than comparing the
performance of di�erent semi-supervised or supervised learning
algorithms. To this end, we use the LGC algorithm [28] which we
brie�y review here. It is easy to follow the same way to generalize
the graph learning ideas introduced in this paper for other popular
SSL algorithms, such as Zhu et al.’s [30] and Belkin et al.’s [1] that
have similar objectives to LGC, which we do not pursue further.

�e LGC algorithm solves the optimization problem

arg min
F 2Rn⇥c

tr ((F �Y )T (F �Y ) + �FT LF ) , (2)

where tr () denotes matrix trace, L := In � P is the normalized
graph Laplacian, such that In is the n-by-n identity matrix, P =
D�1/2WD�1/2, D := dia�(W 1n ) and 1n is the n-dimensional all-
1’s vector. Taking the derivative w.r.t. F and reorganizing the terms,
we would get the closed-form solution F = (In + �L)�1Y .

�e solution can also be found without explicitly taking any
matrix inverse and instead using the power method [11], as

(I + �L)F = Y )F + �F = �PF +Y ) F =
�

1 + �
PF +

1
1 + �

Y

) F (t+1)  µPF (t ) + (1 � µ )Y . (3)

3.4 Problem Statement
We address the problem of graph (structure) learning for SSL. Our
goal is to estimate, for a given task, suitable hyperparameters within
a �exible graph family. In particular, we aim to infer

• A, containing the bandwidths (or weights) am ’s for di�erent
dimensions in Eq. (1), as well as

• k , for sparse kNN graph construction;

so as to be�er align the graph structure with the underlying (hidden)
data manifold and the given SSL task.

1Se�ing A equal to (i) the identity, (ii) the (diagonal) variance, or (iii) the covari-
ance matrix would compute similarity based on Euclidean, normalized Euclidean, or
Mahalanobis distance, respectively.
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, where A := dia�(a) is a diagonal matrix
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m , that corresponds to a metric in which

di�erent dimensions/features are given di�erent “weights”, which

allows a form of feature selection.1 In addition, we employ kNN
graph construction for sparsity.

Our goal is to learn both k as well as all the am ’s, by means of
which we aim to construct a graph that is suitable for the semi-
supervised learning task at hand.

3.3 Graph based Semi-Supervised Learning
Given the constructed graph G, a graph-based SSL algorithm uses
W and the label matrix Y to generate output matrix F by label
di�usion in the weighted graph. Note that this paper focuses on
the multi-class classi�cation problem, hence F 2 Rn⇥c .

�ere exist a number of SSL algorithms with various objectives.
Perhaps the most widely used ones include the Gaussian Random
Fields algorithm by Zhu et al. [30], Laplacian Support Vector Ma-
chine algorithm by Belkin et al. [1], and Local and Global Consis-
tency (LGC) algorithm by Zhou et al. [28].

�e topic of this paper is how to e�ectively learn the hyper-
parameters of graph construction. �erefore, we focus on how
the performance of a given recognized SSL algorithm can be im-
proved by means of learning the graph, rather than comparing the
performance of di�erent semi-supervised or supervised learning
algorithms. To this end, we use the LGC algorithm [28] which we
brie�y review here. It is easy to follow the same way to generalize
the graph learning ideas introduced in this paper for other popular
SSL algorithms, such as Zhu et al.’s [30] and Belkin et al.’s [1] that
have similar objectives to LGC, which we do not pursue further.

�e LGC algorithm solves the optimization problem

arg min
F 2Rn⇥c

tr ((F �Y )T (F �Y ) + �FT LF ) , (2)

where tr () denotes matrix trace, L := In � P is the normalized
graph Laplacian, such that In is the n-by-n identity matrix, P =
D�1/2WD�1/2, D := dia�(W 1n ) and 1n is the n-dimensional all-
1’s vector. Taking the derivative w.r.t. F and reorganizing the terms,
we would get the closed-form solution F = (In + �L)�1Y .

�e solution can also be found without explicitly taking any
matrix inverse and instead using the power method [11], as

(I + �L)F = Y )F + �F = �PF +Y ) F =
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) F (t+1)  µPF (t ) + (1 � µ )Y . (3)

3.4 Problem Statement
We address the problem of graph (structure) learning for SSL. Our
goal is to estimate, for a given task, suitable hyperparameters within
a �exible graph family. In particular, we aim to infer

• A, containing the bandwidths (or weights) am ’s for di�erent
dimensions in Eq. (1), as well as

• k , for sparse kNN graph construction;

so as to be�er align the graph structure with the underlying (hidden)
data manifold and the given SSL task.

1Se�ing A equal to (i) the identity, (ii) the (diagonal) variance, or (iii) the covari-
ance matrix would compute similarity based on Euclidean, normalized Euclidean, or
Mahalanobis distance, respectively.
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complexity for each gradient update. (3) Graph learning problem
typically has a very large search space with a non-convex optimiza-
tion objective, where initialization becomes extremely important.
To this end, we design an e�cient adaptive search framework out-
side the core of graph learning. �is is not explicitly addressed by
those prior work, whereas it is one of the key issues we focus on
through the ideas of relative performance and early-termination.

3 PRELIMINARIES AND BACKGROUND
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3.2 Graph Construction
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construction process generates a graph G from D in which each
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bandwidth parameter.
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x i and x j if and only if K (x i ,x j ) � � , where � 2 R⇤+ is a free
parameter. � thresholding is prone to generating disconnected or
almost-complete graphs for an improper value of � . On the other
hand, in the k nearest neighbors (kNN) approach, there exists an
undirected edge between x i and x j if either x i or x j is one of the
k closest examples to the other. kNN approach has the advantage
of being robust to choosing an inappropriate �xed threshold.

In this work, we use a general kernel function that enables a
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algorithms. To this end, we use the LGC algorithm [28] which we
brie�y review here. It is easy to follow the same way to generalize
the graph learning ideas introduced in this paper for other popular
SSL algorithms, such as Zhu et al.’s [30] and Belkin et al.’s [1] that
have similar objectives to LGC, which we do not pursue further.
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Task

Jointly learning a graph W and solving SSL task,
so that W captures “right” structure needed by the task. 



Link Quality of W with Task

F⇤ = (I+ ↵L)�1Y
• Define a loss g of W over F*

• F* is ”better” means W has better quality

• Using validation set 
• “better” means smaller ”difference” between F* and Y (true label)

over validation set. 

F⇤ = (I+ ↵L)�1Y A function of W

g(F*) over validation set measures the quality of W of the task 
[the smaller the better]

Task-driven 
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4 PROPOSED METHOD: PG�LEARN
In this section, we present the formulation and e�cient computa-
tion of our graph learning algorithm PG������, for Parallel Graph
Learning for SSL.

In essence, the feature weights am ’s and k are the model param-
eters that govern how the algorithm’s performance generalizes to
unlabeled data. Typical model selection approaches include random
search or grid search to �nd a con�guration of the hyperparameters
that yield the best cross-validation performance.

Unfortunately, the search space becomes prohibitively large for
high-dimensional datasets that could render such methods futile.
In such cases, one could instead carefully select the con�gurations
in an adaptive manner. �e general idea is to impose a smooth loss
function �(·) on the validation set over which A can be estimated
using a gradient based method.

We present the main steps of our algorithm for adaptive hyper-
parameter search in Algorithm 1.

Algorithm 1 G������� (for Adaptive Hyperparameter Search)
1: Initialize k and a (vector containing am ’s); t := 0
2: repeat
3: Compute F (t ) using kNN graph on current am ’s by (3)
4: Compute gradient @�

@am based on F (t ) by (5) for each am

5: Update am ’s by a(t+1) := a(t ) � � d�
da ; t := t + 1

6: until am ’s have converged

�e initialization in step 1 can be done using some heuristics,
although the most prevalent and easiest approach is a random guess.
Given a �xed initial (random) con�guration, we essentially perform
an adaptive search that strives to �nd a be�er con�guration around
it, guided by the validation loss�(·). In Section 4.1, we introduce the
speci�c function �(·) that we use and how to compute its gradient.

While the gradient based optimization is likely to �nd a be�er
con�guration than where it started, the �nal performance of the
SSL algorithm depends considerably on the initialization. Provided
that the search space is quite large for high dimensional datasets, it
is of paramount importance to try di�erent random initializations
in step 1, in other words, to run Algorithm 1 several times. As such,
the G������� algorithm can be seen as an adaptive local search,
where we start at a random con�guration and adaptively search in
the vicinity for a be�er one.

As we discuss in Section 4.1, the gradient based updates are com-
putationally demanding. �is makes naı̈vely running Algorithm
1 several times expensive. �ere are however two properties that
we can take considerable advantage of: (1) both the SSL algorithm
(using the power method) as well as the gradient optimization are
iterative, any-time algorithms (i.e., they can return an answer at
any time that they are probed), and (2) di�erent initializations can
be run independently in parallel.

In particular, our search strategy is inspired by a general frame-
work of parallel hyperparameter search designed for iterative ma-
chine learning algorithms that has been recently proposed by
Jamieson and Talwalkar [12] and a follow-up by Li et al. [15].
�is framework perfectly suits our SSL se�ing for the reasons (1)
and (2) above. �e idea is to start multiple (random) con�gurations

in parallel threads, run them for a bounded amount of time, probe
for their solutions, throw out the worst half (or some other pre-
speci�ed fraction), and repeat until one con�gurations remains. By
this strategy of early termination, that is by qui�ing poor initial-
izations early without running them to completion, the compute
resources are e�ectively allocated to promising hyperparameter
con�gurations. Beyond what has been proposed in [12], we start
new initializations on the idle threads whose jobs have been termi-
nated in order to fully utilize the parallel threads. We describe the
details of our parallel search in Section 4.2.

4.1 Validation Loss �(·) & Gradient Updates
We base the learning of the hyperparameters of our kernel function
(am ’s in Eq. (1)) on minimizing some loss criterion on validation
data. Let L ⇢ D denote the set of l labeled examples, andV ⇢ L
a subset of the labeled examples designated as validation samples.
A simple choice for the validation loss would be the labeling error,
wri�en as �A (V ) =

P
� 2V (1 � F�c� ), where c� denotes the true

class index for a validation instance � . Other possible choices for
each � include � log F�c� , (1 � F�c� )x , x�F �c� , with x > 1.

In semi-supervised learning the labeled set is o�en small. �is
means the number of validation examples is also limited. To squeeze
the most out of the validation set, we propose to use a pairwise
learning-to-rank objective:

�A (V ) =
cX

c 0=1

X

(�,�0): �2Vc0 ,
�02V\Vc0

� log� (F�c 0 � F� 0c 0 ) (4)

where Vc 0 denotes the validation nodes whose true class index
is c 0 and � (x ) = exp(x )

1+exp(x ) is the sigmoid function. �e larger the
di�erence (F�c 0 � F� 0c 0 ), or intuitively the more con�dently the
solution F ranks validation examples of class c 0 above other valida-
tion examples not in class c 0, the be�er it is; since then � (·) would
approach 1 and the loss to zero.

In short, we aim to �nd the hyperparameters A that minimize
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where we denote by F�� 0 = (F�c 0 � F� 0c 0 ) and o�� 0 = � (F�� 0 ).
�e values @F �c0
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@am for each class c 0 and�,� 0 2 V can
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Validation Loss g(F*)
Many ways to define the validation loss
• As long as it can measure the different between F* and Y

e.g. 
•We choose a pairwise ranking-based loss
• Validation set is quiet small 
• Pairwise makes full use of information 
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4 PROPOSED METHOD: PG�LEARN
In this section, we present the formulation and e�cient computa-
tion of our graph learning algorithm PG������, for Parallel Graph
Learning for SSL.

In essence, the feature weights am ’s and k are the model param-
eters that govern how the algorithm’s performance generalizes to
unlabeled data. Typical model selection approaches include random
search or grid search to �nd a con�guration of the hyperparameters
that yield the best cross-validation performance.

Unfortunately, the search space becomes prohibitively large for
high-dimensional datasets that could render such methods futile.
In such cases, one could instead carefully select the con�gurations
in an adaptive manner. �e general idea is to impose a smooth loss
function �(·) on the validation set over which A can be estimated
using a gradient based method.

We present the main steps of our algorithm for adaptive hyper-
parameter search in Algorithm 1.

Algorithm 1 G������� (for Adaptive Hyperparameter Search)
1: Initialize k and a (vector containing am ’s); t := 0
2: repeat
3: Compute F (t ) using kNN graph on current am ’s by (3)
4: Compute gradient @�

@am based on F (t ) by (5) for each am

5: Update am ’s by a(t+1) := a(t ) � � d�
da ; t := t + 1

6: until am ’s have converged

�e initialization in step 1 can be done using some heuristics,
although the most prevalent and easiest approach is a random guess.
Given a �xed initial (random) con�guration, we essentially perform
an adaptive search that strives to �nd a be�er con�guration around
it, guided by the validation loss�(·). In Section 4.1, we introduce the
speci�c function �(·) that we use and how to compute its gradient.

While the gradient based optimization is likely to �nd a be�er
con�guration than where it started, the �nal performance of the
SSL algorithm depends considerably on the initialization. Provided
that the search space is quite large for high dimensional datasets, it
is of paramount importance to try di�erent random initializations
in step 1, in other words, to run Algorithm 1 several times. As such,
the G������� algorithm can be seen as an adaptive local search,
where we start at a random con�guration and adaptively search in
the vicinity for a be�er one.

As we discuss in Section 4.1, the gradient based updates are com-
putationally demanding. �is makes naı̈vely running Algorithm
1 several times expensive. �ere are however two properties that
we can take considerable advantage of: (1) both the SSL algorithm
(using the power method) as well as the gradient optimization are
iterative, any-time algorithms (i.e., they can return an answer at
any time that they are probed), and (2) di�erent initializations can
be run independently in parallel.

In particular, our search strategy is inspired by a general frame-
work of parallel hyperparameter search designed for iterative ma-
chine learning algorithms that has been recently proposed by
Jamieson and Talwalkar [12] and a follow-up by Li et al. [15].
�is framework perfectly suits our SSL se�ing for the reasons (1)
and (2) above. �e idea is to start multiple (random) con�gurations

in parallel threads, run them for a bounded amount of time, probe
for their solutions, throw out the worst half (or some other pre-
speci�ed fraction), and repeat until one con�gurations remains. By
this strategy of early termination, that is by qui�ing poor initial-
izations early without running them to completion, the compute
resources are e�ectively allocated to promising hyperparameter
con�gurations. Beyond what has been proposed in [12], we start
new initializations on the idle threads whose jobs have been termi-
nated in order to fully utilize the parallel threads. We describe the
details of our parallel search in Section 4.2.

4.1 Validation Loss �(·) & Gradient Updates
We base the learning of the hyperparameters of our kernel function
(am ’s in Eq. (1)) on minimizing some loss criterion on validation
data. Let L ⇢ D denote the set of l labeled examples, andV ⇢ L
a subset of the labeled examples designated as validation samples.
A simple choice for the validation loss would be the labeling error,
wri�en as �A (V ) =

P
� 2V (1 � F�c� ), where c� denotes the true

class index for a validation instance � . Other possible choices for
each � include � log F�c� , (1 � F�c� )x , x�F �c� , with x > 1.

In semi-supervised learning the labeled set is o�en small. �is
means the number of validation examples is also limited. To squeeze
the most out of the validation set, we propose to use a pairwise
learning-to-rank objective:

�A (V ) =
cX

c 0=1

X

(�,�0): �2Vc0 ,
�02V\Vc0

� log� (F�c 0 � F� 0c 0 ) (4)

where Vc 0 denotes the validation nodes whose true class index
is c 0 and � (x ) = exp(x )

1+exp(x ) is the sigmoid function. �e larger the
di�erence (F�c 0 � F� 0c 0 ), or intuitively the more con�dently the
solution F ranks validation examples of class c 0 above other valida-
tion examples not in class c 0, the be�er it is; since then � (·) would
approach 1 and the loss to zero.

In short, we aim to �nd the hyperparameters A that minimize
the total negative log likelihood of ordered validation pairs. �e
optimization is conducted by gradient descent. �e gradient is
computed as
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where we denote by F�� 0 = (F�c 0 � F� 0c 0 ) and o�� 0 = � (F�� 0 ).
�e values @F �c0

@am and @F �0c0
@am for each class c 0 and�,� 0 2 V can
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@am , which is given as
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= �(In + �L)�1
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F = � (In + �L)
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F , (6)

using the equivalence dX�1 = �X�1 (dX )X�1. Recall that P =
D�1/2WD�1/2 with P i j =

W i jp
didj

; di being node i’s degree in G.
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eters that govern how the algorithm’s performance generalizes to
unlabeled data. Typical model selection approaches include random
search or grid search to �nd a con�guration of the hyperparameters
that yield the best cross-validation performance.
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in an adaptive manner. �e general idea is to impose a smooth loss
function �(·) on the validation set over which A can be estimated
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although the most prevalent and easiest approach is a random guess.
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SSL algorithm depends considerably on the initialization. Provided
that the search space is quite large for high dimensional datasets, it
is of paramount importance to try di�erent random initializations
in step 1, in other words, to run Algorithm 1 several times. As such,
the G������� algorithm can be seen as an adaptive local search,
where we start at a random con�guration and adaptively search in
the vicinity for a be�er one.

As we discuss in Section 4.1, the gradient based updates are com-
putationally demanding. �is makes naı̈vely running Algorithm
1 several times expensive. �ere are however two properties that
we can take considerable advantage of: (1) both the SSL algorithm
(using the power method) as well as the gradient optimization are
iterative, any-time algorithms (i.e., they can return an answer at
any time that they are probed), and (2) di�erent initializations can
be run independently in parallel.

In particular, our search strategy is inspired by a general frame-
work of parallel hyperparameter search designed for iterative ma-
chine learning algorithms that has been recently proposed by
Jamieson and Talwalkar [12] and a follow-up by Li et al. [15].
�is framework perfectly suits our SSL se�ing for the reasons (1)
and (2) above. �e idea is to start multiple (random) con�gurations
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for their solutions, throw out the worst half (or some other pre-
speci�ed fraction), and repeat until one con�gurations remains. By
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izations early without running them to completion, the compute
resources are e�ectively allocated to promising hyperparameter
con�gurations. Beyond what has been proposed in [12], we start
new initializations on the idle threads whose jobs have been termi-
nated in order to fully utilize the parallel threads. We describe the
details of our parallel search in Section 4.2.

4.1 Validation Loss �(·) & Gradient Updates
We base the learning of the hyperparameters of our kernel function
(am ’s in Eq. (1)) on minimizing some loss criterion on validation
data. Let L ⇢ D denote the set of l labeled examples, andV ⇢ L
a subset of the labeled examples designated as validation samples.
A simple choice for the validation loss would be the labeling error,
wri�en as �A (V ) =
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� 2V (1 � F�c� ), where c� denotes the true

class index for a validation instance � . Other possible choices for
each � include � log F�c� , (1 � F�c� )x , x�F �c� , with x > 1.

In semi-supervised learning the labeled set is o�en small. �is
means the number of validation examples is also limited. To squeeze
the most out of the validation set, we propose to use a pairwise
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where Vc 0 denotes the validation nodes whose true class index
is c 0 and � (x ) = exp(x )

1+exp(x ) is the sigmoid function. �e larger the
di�erence (F�c 0 � F� 0c 0 ), or intuitively the more con�dently the
solution F ranks validation examples of class c 0 above other valida-
tion examples not in class c 0, the be�er it is; since then � (·) would
approach 1 and the loss to zero.

In short, we aim to �nd the hyperparameters A that minimize
the total negative log likelihood of ordered validation pairs. �e
optimization is conducted by gradient descent. �e gradient is
computed as
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Node inside c Node outside c

Prob of ranking v above v’,
based on output F



Minimizing g
• Use gradient descent 
• F* has closed form, can get gradient w.r.t. W
• Deriving gradient is omitted, please see our paper
• Make full use of sparsity 

• Complexity
• Computational complexity

k: #NNs, c: #classes,  t: # power method iterations
• linear in dimensionality, 

log-linear in sample size 
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We can then write
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4.1.1 Matrix-form gradient. We can rewrite all element-wise
gradients into a combined matrix-form gradient. �e matrix-form
is compact and can be computed more e�ciently on platforms
optimized for matrix operations (e.g., Matlab).

�e matrix-form uses 3-d matrix (or tensor) representation. In
the following, we use � to denote element-wise multiplication, ↵
element-wise division, and ⌦ for element-wise power. In addition, ·
denotes regular matrix dot product. For multiplication and division,
a 3-d matrix should be viewed as a 2-d matrix with vector elements.

First we extend the derivative w.r.t. am in Eq. (9) into derivative
w.r.t. a:

@P i j
@a
=
@W i j

@a

P i j
W i j

�W i j

2
(
P i j
W i j
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(
X

n
W in ·

X

n

@W jn

@a
+
X

n
W jn ·

X

n

@W in
@a

) (10)

To write this equation concisely, let tensor � be @W
@a , a 2d-matrix

with vector elements �i j =
@W i j
@a , and let tensor �X be the one

with vector elements �X i j = (x i � x j )2.
�en we can rewrite some equations using the above notation:

X

n
W in = (W · 1n )i (11)

X

n

@W jn

@a
= (� · 1n )j (12)

X

n
W in ·

X

n

@W jn

@a
= (W · 1n · (� · 1n )T )i j (13)

Now we can rewrite element-wise gradients in (10) into one matrix-
form gradient:

dP
da
= � � (P ↵W ) � 1

2
P ⌦3 ↵W ⌦2

� (W · 1n · (� · 1n )T + (W · 1n · (� · 1n )T )T ) (14)

�e only thing le� is the computation of � = @W
@a . Notice that

@W i j

@am
=
@ exp(�Pdm=1 am (x id � x jd )2)

@am
= �W i j (x id � x jd )2

=) @W i j

@a
= �W i j (x i � x j )2 = �W i j�X i j

=) dW
da
= �W � �X = � (15)

All in all, we transform the element-wise gradients @P i j
@am as given

in Eq. (9) to compact tensor-form updates dP
da as in Eq. (14). �e

tensor-form gradient updates not only provide speed up, but also

can be expanded to make full use of the kNN graph sparsity. In
particular,W is akNN-sparse matrix withO (kn) non-zero elements.
First, Eq. (15) for � shows that we do not need to compute full �X
but only the elements in �X corresponding to non-zero elements
ofW . Similarly, in Eq. (14), matrix P does not need to be fully
computed, and the whole Eq. (14) can be computed sparsely.

4.1.2 Complexity analysis. We �rst analyze computational com-
plexity in terms of two main components: constructing the kNN
graph and computing F in line 3, and computing the gradient d�

da
in line 4 of Algorithm 1 as outlined in this subsection.

Let us denote the number of non-zeros inW , i.e. the number of
edges in the kNN graph, by e = nnz (W ). We assume kn  e  2kn
remains near-constant as a changes over the G������� iterations.

In line 4, we �rst construct tensor � as in Eq. (15) in O (ed ).
Computing dP

da as in Eq. (14) also takes O (ed ). Next, obtaining
matrix @F

@am in Eq. (6) seemingly requires inverting (In + �L)�1.
However, we can rewrite Eq. (6) as

(In+�In��P )
@F
@am

= �
@P
@am

F ) @F
@am

= � (P�In )
@F
@am
+�
@P
@am

F

which can be solved via the power method that takes t iterations
in O (ect ). Computing @F

@am and plugging in Eq. (5) to get �(·)’s
gradient for all am ’s then takes O (ectd ), or equivalently O (knctd ).

In line 3, updated am ’s are used for weighted node similarities
to compute kNNs for each instance. Nearest neighbor computation
for all instances is inherently quadratic, which however can be
sped up by approximation algorithms and data structures such as
locality-sensitive hashing (LSH) [10]. To this end, we use a fast
kNN graph construction algorithm that takes advantage of LSH
and has O (n[dk2 + logn]) complexity [26]; only quadratic in the
(small) k but log-linear in n. Given the kNN graph, F can then be
computed via (3) in O (ect 0) for t 0 iterations of the power method.

Overall, one iteration of Algo. 1 takes O (n[kctd + dk2 + logn]).
Furthermore, if we consider k, c, t as constants, then the computa-
tional complexity can be wri�en as O (n[d + logn]).

In addition, memory requirement for each gradient update is
O (knd ). �e bo�leneck is the construction of tensors � and �X
with size-d vector elements. As discussed earlier those are con-
structed sparsely, i.e., only the elements corresponding to non-zero
entries ofW , which is O (kn), are stored.

4.2 Parallel Hyperparameter Search with
Adaptive Resource Allocation

For high-dimensional datasets, the search space of hyperparameter
con�gurations is huge. In essence, Algorithm 1 is an adaptive search
around a single initial point in this space. As with many gradient-
based optimization of high-dimensional non-convex functions with
unknown smoothness, its performance depends on the initialization.
�erefore, trying di�erent initializations of Algorithm 1 is bene�cial
to improving performance.

An illustrative example over a 2-d search space is shown in
Figure 1 (best in color). In this space most con�gurations yield
poor validation accuracy, as would be the likely case in even higher
dimensions. In the �gure, eight random con�gurations are shown
(with stars). �e sequence of arrows from a con�guration can be
seen analogous to the iterations of a single run of Algorithm 1.

• Memory complexity
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in Eq. (9) to compact tensor-form updates dP
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tensor-form gradient updates not only provide speed up, but also

can be expanded to make full use of the kNN graph sparsity. In
particular,W is akNN-sparse matrix withO (kn) non-zero elements.
First, Eq. (15) for � shows that we do not need to compute full �X
but only the elements in �X corresponding to non-zero elements
ofW . Similarly, in Eq. (14), matrix P does not need to be fully
computed, and the whole Eq. (14) can be computed sparsely.

4.1.2 Complexity analysis. We �rst analyze computational com-
plexity in terms of two main components: constructing the kNN
graph and computing F in line 3, and computing the gradient d�

da
in line 4 of Algorithm 1 as outlined in this subsection.

Let us denote the number of non-zeros inW , i.e. the number of
edges in the kNN graph, by e = nnz (W ). We assume kn  e  2kn
remains near-constant as a changes over the G������� iterations.

In line 4, we �rst construct tensor � as in Eq. (15) in O (ed ).
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which can be solved via the power method that takes t iterations
in O (ect ). Computing @F

@am and plugging in Eq. (5) to get �(·)’s
gradient for all am ’s then takes O (ectd ), or equivalently O (knctd ).

In line 3, updated am ’s are used for weighted node similarities
to compute kNNs for each instance. Nearest neighbor computation
for all instances is inherently quadratic, which however can be
sped up by approximation algorithms and data structures such as
locality-sensitive hashing (LSH) [10]. To this end, we use a fast
kNN graph construction algorithm that takes advantage of LSH
and has O (n[dk2 + logn]) complexity [26]; only quadratic in the
(small) k but log-linear in n. Given the kNN graph, F can then be
computed via (3) in O (ect 0) for t 0 iterations of the power method.

Overall, one iteration of Algo. 1 takes O (n[kctd + dk2 + logn]).
Furthermore, if we consider k, c, t as constants, then the computa-
tional complexity can be wri�en as O (n[d + logn]).

In addition, memory requirement for each gradient update is
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4 PROPOSED METHOD: PG�LEARN
In this section, we present the formulation and e�cient computa-
tion of our graph learning algorithm PG������, for Parallel Graph
Learning for SSL.

In essence, the feature weights am ’s and k are the model param-
eters that govern how the algorithm’s performance generalizes to
unlabeled data. Typical model selection approaches include random
search or grid search to �nd a con�guration of the hyperparameters
that yield the best cross-validation performance.

Unfortunately, the search space becomes prohibitively large for
high-dimensional datasets that could render such methods futile.
In such cases, one could instead carefully select the con�gurations
in an adaptive manner. �e general idea is to impose a smooth loss
function �(·) on the validation set over which A can be estimated
using a gradient based method.

We present the main steps of our algorithm for adaptive hyper-
parameter search in Algorithm 1.

Algorithm 1 G������� (for Adaptive Hyperparameter Search)
1: Initialize k and a (vector containing am ’s); t := 0
2: repeat
3: Compute F (t ) using kNN graph on current am ’s by (3)
4: Compute gradient @�

@am based on F (t ) by (5) for each am

5: Update am ’s by a(t+1) := a(t ) � � d�
da ; t := t + 1

6: until am ’s have converged

�e initialization in step 1 can be done using some heuristics,
although the most prevalent and easiest approach is a random guess.
Given a �xed initial (random) con�guration, we essentially perform
an adaptive search that strives to �nd a be�er con�guration around
it, guided by the validation loss�(·). In Section 4.1, we introduce the
speci�c function �(·) that we use and how to compute its gradient.

While the gradient based optimization is likely to �nd a be�er
con�guration than where it started, the �nal performance of the
SSL algorithm depends considerably on the initialization. Provided
that the search space is quite large for high dimensional datasets, it
is of paramount importance to try di�erent random initializations
in step 1, in other words, to run Algorithm 1 several times. As such,
the G������� algorithm can be seen as an adaptive local search,
where we start at a random con�guration and adaptively search in
the vicinity for a be�er one.

As we discuss in Section 4.1, the gradient based updates are com-
putationally demanding. �is makes naı̈vely running Algorithm
1 several times expensive. �ere are however two properties that
we can take considerable advantage of: (1) both the SSL algorithm
(using the power method) as well as the gradient optimization are
iterative, any-time algorithms (i.e., they can return an answer at
any time that they are probed), and (2) di�erent initializations can
be run independently in parallel.

In particular, our search strategy is inspired by a general frame-
work of parallel hyperparameter search designed for iterative ma-
chine learning algorithms that has been recently proposed by
Jamieson and Talwalkar [12] and a follow-up by Li et al. [15].
�is framework perfectly suits our SSL se�ing for the reasons (1)
and (2) above. �e idea is to start multiple (random) con�gurations

in parallel threads, run them for a bounded amount of time, probe
for their solutions, throw out the worst half (or some other pre-
speci�ed fraction), and repeat until one con�gurations remains. By
this strategy of early termination, that is by qui�ing poor initial-
izations early without running them to completion, the compute
resources are e�ectively allocated to promising hyperparameter
con�gurations. Beyond what has been proposed in [12], we start
new initializations on the idle threads whose jobs have been termi-
nated in order to fully utilize the parallel threads. We describe the
details of our parallel search in Section 4.2.

4.1 Validation Loss �(·) & Gradient Updates
We base the learning of the hyperparameters of our kernel function
(am ’s in Eq. (1)) on minimizing some loss criterion on validation
data. Let L ⇢ D denote the set of l labeled examples, andV ⇢ L
a subset of the labeled examples designated as validation samples.
A simple choice for the validation loss would be the labeling error,
wri�en as �A (V ) =

P
� 2V (1 � F�c� ), where c� denotes the true

class index for a validation instance � . Other possible choices for
each � include � log F�c� , (1 � F�c� )x , x�F �c� , with x > 1.

In semi-supervised learning the labeled set is o�en small. �is
means the number of validation examples is also limited. To squeeze
the most out of the validation set, we propose to use a pairwise
learning-to-rank objective:

�A (V ) =
cX

c 0=1

X

(�,�0): �2Vc0 ,
�02V\Vc0

� log� (F�c 0 � F� 0c 0 ) (4)

where Vc 0 denotes the validation nodes whose true class index
is c 0 and � (x ) = exp(x )

1+exp(x ) is the sigmoid function. �e larger the
di�erence (F�c 0 � F� 0c 0 ), or intuitively the more con�dently the
solution F ranks validation examples of class c 0 above other valida-
tion examples not in class c 0, the be�er it is; since then � (·) would
approach 1 and the loss to zero.

In short, we aim to �nd the hyperparameters A that minimize
the total negative log likelihood of ordered validation pairs. �e
optimization is conducted by gradient descent. �e gradient is
computed as

@�

@am
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(5)

where we denote by F�� 0 = (F�c 0 � F� 0c 0 ) and o�� 0 = � (F�� 0 ).
�e values @F �c0

@am and @F �0c0
@am for each class c 0 and�,� 0 2 V can

be read o� of matrix @F
@am , which is given as

@F
@am

= �(In + �L)�1
@(In + �L)
@am

F = � (In + �L)
�1 @P
@am

F , (6)

using the equivalence dX�1 = �X�1 (dX )X�1. Recall that P =
D�1/2WD�1/2 with P i j =

W i jp
didj

; di being node i’s degree in G.
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5: Update am ’s by a(t+1) := a(t ) � � d�
da ; t := t + 1

6: until am ’s have converged

�e initialization in step 1 can be done using some heuristics,
although the most prevalent and easiest approach is a random guess.
Given a �xed initial (random) con�guration, we essentially perform
an adaptive search that strives to �nd a be�er con�guration around
it, guided by the validation loss�(·). In Section 4.1, we introduce the
speci�c function �(·) that we use and how to compute its gradient.

While the gradient based optimization is likely to �nd a be�er
con�guration than where it started, the �nal performance of the
SSL algorithm depends considerably on the initialization. Provided
that the search space is quite large for high dimensional datasets, it
is of paramount importance to try di�erent random initializations
in step 1, in other words, to run Algorithm 1 several times. As such,
the G������� algorithm can be seen as an adaptive local search,
where we start at a random con�guration and adaptively search in
the vicinity for a be�er one.

As we discuss in Section 4.1, the gradient based updates are com-
putationally demanding. �is makes naı̈vely running Algorithm
1 several times expensive. �ere are however two properties that
we can take considerable advantage of: (1) both the SSL algorithm
(using the power method) as well as the gradient optimization are
iterative, any-time algorithms (i.e., they can return an answer at
any time that they are probed), and (2) di�erent initializations can
be run independently in parallel.

In particular, our search strategy is inspired by a general frame-
work of parallel hyperparameter search designed for iterative ma-
chine learning algorithms that has been recently proposed by
Jamieson and Talwalkar [12] and a follow-up by Li et al. [15].
�is framework perfectly suits our SSL se�ing for the reasons (1)
and (2) above. �e idea is to start multiple (random) con�gurations

in parallel threads, run them for a bounded amount of time, probe
for their solutions, throw out the worst half (or some other pre-
speci�ed fraction), and repeat until one con�gurations remains. By
this strategy of early termination, that is by qui�ing poor initial-
izations early without running them to completion, the compute
resources are e�ectively allocated to promising hyperparameter
con�gurations. Beyond what has been proposed in [12], we start
new initializations on the idle threads whose jobs have been termi-
nated in order to fully utilize the parallel threads. We describe the
details of our parallel search in Section 4.2.

4.1 Validation Loss �(·) & Gradient Updates
We base the learning of the hyperparameters of our kernel function
(am ’s in Eq. (1)) on minimizing some loss criterion on validation
data. Let L ⇢ D denote the set of l labeled examples, andV ⇢ L
a subset of the labeled examples designated as validation samples.
A simple choice for the validation loss would be the labeling error,
wri�en as �A (V ) =

P
� 2V (1 � F�c� ), where c� denotes the true

class index for a validation instance � . Other possible choices for
each � include � log F�c� , (1 � F�c� )x , x�F �c� , with x > 1.

In semi-supervised learning the labeled set is o�en small. �is
means the number of validation examples is also limited. To squeeze
the most out of the validation set, we propose to use a pairwise
learning-to-rank objective:

�A (V ) =
cX

c 0=1

X

(�,�0): �2Vc0 ,
�02V\Vc0

� log� (F�c 0 � F� 0c 0 ) (4)

where Vc 0 denotes the validation nodes whose true class index
is c 0 and � (x ) = exp(x )

1+exp(x ) is the sigmoid function. �e larger the
di�erence (F�c 0 � F� 0c 0 ), or intuitively the more con�dently the
solution F ranks validation examples of class c 0 above other valida-
tion examples not in class c 0, the be�er it is; since then � (·) would
approach 1 and the loss to zero.

In short, we aim to �nd the hyperparameters A that minimize
the total negative log likelihood of ordered validation pairs. �e
optimization is conducted by gradient descent. �e gradient is
computed as

@�

@am
=

@

 
Pc
c 0=1

P
(�,� 0):� 2Vc0,� 0 2V\Vc0

�F�� 0 + log(1 + exp (F�� 0 ))
!

@am

=

cX

c 0=1

X

(�,� 0):� 2Vc0,� 0 2V\Vc0
(o�� 0 � 1)

⇣ @F�c 0
@am

� @F� 0c 0
@am

⌘

(5)

where we denote by F�� 0 = (F�c 0 � F� 0c 0 ) and o�� 0 = � (F�� 0 ).
�e values @F �c0

@am and @F �0c0
@am for each class c 0 and�,� 0 2 V can

be read o� of matrix @F
@am , which is given as

@F
@am

= �(In + �L)�1
@(In + �L)
@am

F = � (In + �L)
�1 @P
@am

F , (6)

using the equivalence dX�1 = �X�1 (dX )X�1. Recall that P =
D�1/2WD�1/2 with P i j =

W i jp
didj

; di being node i’s degree in G.
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4 PROPOSED METHOD: PG�LEARN
In this section, we present the formulation and e�cient computa-
tion of our graph learning algorithm PG������, for Parallel Graph
Learning for SSL.

In essence, the feature weights am ’s and k are the model param-
eters that govern how the algorithm’s performance generalizes to
unlabeled data. Typical model selection approaches include random
search or grid search to �nd a con�guration of the hyperparameters
that yield the best cross-validation performance.

Unfortunately, the search space becomes prohibitively large for
high-dimensional datasets that could render such methods futile.
In such cases, one could instead carefully select the con�gurations
in an adaptive manner. �e general idea is to impose a smooth loss
function �(·) on the validation set over which A can be estimated
using a gradient based method.

We present the main steps of our algorithm for adaptive hyper-
parameter search in Algorithm 1.

Algorithm 1 G������� (for Adaptive Hyperparameter Search)
1: Initialize k and a (vector containing am ’s); t := 0
2: repeat
3: Compute F (t ) using kNN graph on current am ’s by (3)
4: Compute gradient @�

@am based on F (t ) by (5) for each am

5: Update am ’s by a(t+1) := a(t ) � � d�
da ; t := t + 1

6: until am ’s have converged

�e initialization in step 1 can be done using some heuristics,
although the most prevalent and easiest approach is a random guess.
Given a �xed initial (random) con�guration, we essentially perform
an adaptive search that strives to �nd a be�er con�guration around
it, guided by the validation loss�(·). In Section 4.1, we introduce the
speci�c function �(·) that we use and how to compute its gradient.

While the gradient based optimization is likely to �nd a be�er
con�guration than where it started, the �nal performance of the
SSL algorithm depends considerably on the initialization. Provided
that the search space is quite large for high dimensional datasets, it
is of paramount importance to try di�erent random initializations
in step 1, in other words, to run Algorithm 1 several times. As such,
the G������� algorithm can be seen as an adaptive local search,
where we start at a random con�guration and adaptively search in
the vicinity for a be�er one.

As we discuss in Section 4.1, the gradient based updates are com-
putationally demanding. �is makes naı̈vely running Algorithm
1 several times expensive. �ere are however two properties that
we can take considerable advantage of: (1) both the SSL algorithm
(using the power method) as well as the gradient optimization are
iterative, any-time algorithms (i.e., they can return an answer at
any time that they are probed), and (2) di�erent initializations can
be run independently in parallel.

In particular, our search strategy is inspired by a general frame-
work of parallel hyperparameter search designed for iterative ma-
chine learning algorithms that has been recently proposed by
Jamieson and Talwalkar [12] and a follow-up by Li et al. [15].
�is framework perfectly suits our SSL se�ing for the reasons (1)
and (2) above. �e idea is to start multiple (random) con�gurations

in parallel threads, run them for a bounded amount of time, probe
for their solutions, throw out the worst half (or some other pre-
speci�ed fraction), and repeat until one con�gurations remains. By
this strategy of early termination, that is by qui�ing poor initial-
izations early without running them to completion, the compute
resources are e�ectively allocated to promising hyperparameter
con�gurations. Beyond what has been proposed in [12], we start
new initializations on the idle threads whose jobs have been termi-
nated in order to fully utilize the parallel threads. We describe the
details of our parallel search in Section 4.2.

4.1 Validation Loss �(·) & Gradient Updates
We base the learning of the hyperparameters of our kernel function
(am ’s in Eq. (1)) on minimizing some loss criterion on validation
data. Let L ⇢ D denote the set of l labeled examples, andV ⇢ L
a subset of the labeled examples designated as validation samples.
A simple choice for the validation loss would be the labeling error,
wri�en as �A (V ) =

P
� 2V (1 � F�c� ), where c� denotes the true

class index for a validation instance � . Other possible choices for
each � include � log F�c� , (1 � F�c� )x , x�F �c� , with x > 1.

In semi-supervised learning the labeled set is o�en small. �is
means the number of validation examples is also limited. To squeeze
the most out of the validation set, we propose to use a pairwise
learning-to-rank objective:

�A (V ) =
cX

c 0=1

X

(�,�0): �2Vc0 ,
�02V\Vc0

� log� (F�c 0 � F� 0c 0 ) (4)

where Vc 0 denotes the validation nodes whose true class index
is c 0 and � (x ) = exp(x )

1+exp(x ) is the sigmoid function. �e larger the
di�erence (F�c 0 � F� 0c 0 ), or intuitively the more con�dently the
solution F ranks validation examples of class c 0 above other valida-
tion examples not in class c 0, the be�er it is; since then � (·) would
approach 1 and the loss to zero.

In short, we aim to �nd the hyperparameters A that minimize
the total negative log likelihood of ordered validation pairs. �e
optimization is conducted by gradient descent. �e gradient is
computed as

@�

@am
=

@

 
Pc
c 0=1

P
(�,� 0):� 2Vc0,� 0 2V\Vc0

�F�� 0 + log(1 + exp (F�� 0 ))
!

@am

=

cX

c 0=1

X

(�,� 0):� 2Vc0,� 0 2V\Vc0
(o�� 0 � 1)

⇣ @F�c 0
@am

� @F� 0c 0
@am

⌘

(5)

where we denote by F�� 0 = (F�c 0 � F� 0c 0 ) and o�� 0 = � (F�� 0 ).
�e values @F �c0

@am and @F �0c0
@am for each class c 0 and�,� 0 2 V can

be read o� of matrix @F
@am , which is given as

@F
@am

= �(In + �L)�1
@(In + �L)
@am

F = � (In + �L)
�1 @P
@am

F , (6)

using the equivalence dX�1 = �X�1 (dX )X�1. Recall that P =
D�1/2WD�1/2 with P i j =

W i jp
didj

; di being node i’s degree in G.



Adaptive Parallel Search
How about k and initial a?
• Non-convex problem: Different initial point matters
• Sparsity k always matters a lot
Solution
• Try many effective configurations as much as possible in limited time

A simple & effective idea – Successive Halving [Jamieson, AISTATS 2016] 

1. pick a set of (hyperparameter) configurations
2. run for a fixed amount of time (i.e. iterations)
3. evaluate configurations (metric of interest)
4. keep the best half (terminate the worst half)
5. repeat  2. – 4. until one configuration remains

0th - order



Adaptive Parallel Search
How about k and initial a?
• Non-convex problem: Different initial point matters
• Sparsity k always matters a lot
Solution
• Try many effective configurations as much as possible in limited time.

A simple & effective idea – Successive Halving
• Improve it by fully parallel 

After halving, restart new configurations to reuse threads
• And

Not 0th – order anymore, our solution combined with 1st –order optimization 

[Jamieson, AISTATS 2016] 

No hyperparameter to tune 
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Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.

Datasets
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con�gurations get to run di�erent amounts of time before being
tested against others for the �rst time (depending on the round
they get introduced). �is diversity o�ers some robustness against
variable convergence rates of the �(·) function at di�erent random
starting points.

Example: In Figure 2 we provide a simple example to illustrate
PG������’s execution, using T = 8 parallel threads, downsam-
pling rate r = 2 (equiv. to halving), and B = 16 time units of
processing budget. �ere are blog2 16c = 4 rounds of elimination
at t = 1, 2, 4, 8 respectively, with the �nal selection being made
at t = B. It starts with 8 di�erent initial con�gurations (depicted
with circles) in parallel threads. At each round, bo�om half (=4)
of the threads with highest validation loss are terminated with
their iterations of Algorithm 1 and restart running Algorithm 1
with a new initialization (depicted with a crossed-circle). Overall,
T + (1 � 1/r )T blogr Bc = 8 + 4blog2 16c = 24 con�gurations are
examined—a larger number as compared to the initial 8, thanks to
the early-stopping and adaptive resource allocation strategy.

1
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Figure 2: Example execution of PG������ with T = 8 par-
allel threads, downsampling rate r = 2, and budget B = 16
time units. At each “check point” in time (dashed vertical
lines), (worst) half of the runs are discarded and correspond-
ing threads restart Algorithm 1 with new random con�gu-
rations of (k , a1:d ). At the end, hyperparameters that yield
the lowest �(·) function value (i.e. validation loss) across all
threads are returned (those by thread 4 in this example).

Next in Figure 3 we show example runs on two di�erent real-
world datasets, depicting the progression of validation (blue) and
test (red) accuracy over time, using T = 32, r = 2,B = 64; ⇡15 sec.
unit-time. �in curves depict those for individual threads. Notice
the new initializations starting at di�erent rounds, which progres-
sively improve their validation accuracy over gradient updates (test
acc. closely follows). Bold curves depict the overall-best validation
accuracy (and corresponding test acc.) across all threads over time.

Setting T , B, and r : Before we conclude the description of our
proposed method, we brie�y discuss the choices for its inputs.
Number of threads T is a resource-driven input. Depending on the
platform being utilized—single machine or a parallel architecture
like Hadoop or Spark—PG������ can be executed with as many
parallel threads as physically available to the practitioner. Time
units B should be chosen based on the upper bound of practically
available time. For example, if one has time to run hyperparame-
ter tuning for at most 3 hours and the minimum amount of time
that is meaningful to execute gradient search of con�gurations be-
fore comparing them (i.e., unit time) is 5 minutes, then B becomes
180/5 = 36 units. Finally, r can be seen as a knob for greediness.
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Figure 3: PG������’s val. (blue) and corresponding test (red)
acc. vs. time on COIL (le�) andMNIST (right) (see Table 1).

A larger value of r corresponds to more aggressive elimination
with fewer rounds; speci�cally, each round terminates T (r � 1)/r
con�gurations for a total of blogr Bc rounds. All in all, T and B are
set based on practical resource constraints, physical and temporal,
respectively. On the other hand, r can be set to a small integer, like
2 or 3, without results being very sensitive to the choice.

5 EVALUATION
5.1 Datasets and Baselines
Datasets: We use the publicly available multi-class classi�cation
datasets listed in Table 1. COIL4 (Columbia Object Image Library)
contains images of di�erent objects taken from various angles.
Features are shu�ed and downsampled pixel values from the red
channel. USPS5 is a standard dataset for handwri�en digit recog-
nition, with numeric pixel values scanned from the handwri�en
digits on envelopes from the U.S. Postal Service. MNIST6 is another
popular handwri�en digit dataset, containing size-normalized and
centered digit images. UMIST7 face database is made up of images
of 20 individuals with mixed race, gender, and appearance. Each in-
dividual takes a range of poses, from pro�le to frontal views. Y���8
is a subset of the extended Yale Face Database B, which consists of
frontal images under di�erent illuminations from 5 individuals.

Baselines: We compare the accuracy of PG������ against �ve
baselines that use a variety of schemes, including the strawmen grid
search and random guessing strategies, the seminal unsupervised
gradient-based graph learning by Zhu et al., a self-representation
based graph construction, and a metric learning based scheme.
Speci�cally,
(1) Grid search (GS): k-NN graph with RBF kernel where k and

bandwidth � are chosen via grid search,
(2) Randd search (RS):k-NNwith RBF kernel wherek and di�erent

bandwidths a1:d are randomly chosen,
(3) MinEnt: Minimum Entropy based tuning of a1:d ’s as proposed

by Zhu et al. [30] (generalized to multi-class),
(4) AEW: Adaptive Edge Weighting by Karasuyama et al. [14]

that estimates a1:d ’s through local linear reconstruction, and
(5) IDML: Iterative self-learning scheme combined with distance

metric learning by Dhillon et al. [8].

4h�p://olivier.chapelle.cc/ssl-book/index.html, see ‘benchmark datasets’
5h�p://www.cs.huji.ac.il/⇠shais/datasets/Classi�cationDatasets.html
6h�p://yann.lecun.com/exdb/mnist/
7h�ps://www.she�eld.ac.uk/eee/research/iel/research/face
8h�p://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.
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Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.
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Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.
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Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.
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Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.
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Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.

Single-thread Results



23

Increasing labeling % , results averaged across all datasets
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Table 3: Average test accuracy and rank (w.r.t. test error) of
methods across datasets for varying labeling %. N (p<0.005)
and 4 (p<0.01) denote the cases where PG������ is signi�-
cantly better w.r.t. the paired Wilcoxon signed rank test.

Labeled PG�L MinEnt IDML AEW Grid Randd
10% acc. 0.8819 0.8594N 0.8036N 0.8448N 0.8129N 0.7952N

rank 1.20 2.20 4.40 2.80 4.80 5.60
20% acc. 0.8900 0.8504N 0.8118N 0.8462N 0.8099N 0.8088N

rank 1.42 2.83 4.17 2.92 4.83 4.83
30% acc. 0.9085 0.8636N 0.8551N 0.8613N 0.8454N 0.8386N

rank 1.33 3.67 3.83 3.17 4.00 5.00
40% acc. 0.9153 0.8617N 0.8323N 0.8552N 0.8381N 0.8303N

rank 1.67 3.67 3.50 3.67 4.00 4.50
50% acc. 0.9251 0.87004 0.8647N 0.8635N 0.8556N 0.8459N

rank 1.50 3.17 3.83 3.67 4.00 4.83

Graph learning is especially bene�cial for SSL in noisy scenarios,
where there exist irrelevant or noisy features that would cause
simple graph construction methods like kNN and Grid go astray. To
the e�ect of making the classi�cation tasks more challenging, we
double the feature space for each dataset, by adding 100% new noise
features with values drawn randomly from standard Normal (0, 1).
Moreover, this provides a ground truth on the importance of fea-
tures, based on which we are able to quantify how well our PG�
����� recovers the necessary underlying relations by learning the
appropriate feature weights.

Setup: We report results comparing PG������ only withMinEnt,
Grid, and Randd—in this setup, IDML failed to learn a metric in
several cases due to degeneracy and the authors’ implementation9
of AEW gave out-of-memory errors in many cases. �is however
does not take awaymuch, sinceMinEnt proved to be the second-best
a�er PG������ in the previous section (see Table 3) and Grid and
Randd are the typical methods used o�en in practice.

Given a budget B units of time and T parallel threads for our
PG������, each competing method is executed for a total of BT
units, i.e. all methods receive the same amount of processing time.11
Speci�cally, MinEnt is started in T threads, each with a random
initial con�guration that runs until time is up (i.e., to completion,
no early-terminations). Grid picks (k,� ) from the 2-d grid that
we re�ne recursively, that is, split into �ner resolution containing
more cells as more allocated time remains, while Randd continues
picking random combinations of (k,a1:d ). When the time is over,
each method reports the hyperparameters that yield the highest
validation accuracy, using which the test accuracy is computed.

Results: Table 4 presents the average test accuracy over 10 ran-
dom samples from each dataset, using T = 32. We �nd that despite
32⇥ more time, the baselines are crippled by the irrelevant features
and increased dimensionality. In contrast, PG������ maintains no-
tably high accuracy that is signi�cantly be�er than all the baselines
on all datasets at p = 0.01.

Figure 5 (a) shows how the test error changes by time for all
methods on average, and (b) depicts the validation and the cor-
responding test accuracies for PG������ on an example run. We
see that PG������ gradually improves validation accuracy across

11All experiments executed on a Linux server equipped with 96 Intel Xeon CPUs at
2.1 GHz and a total of 1 TB RAM, using Matlab R2015b Distributed Computing Server.

Table 4: Test accuracy on datasets with 100% added noise fea-
tures, avg’ed across 10 samples; 15 mins of hyperparameter
tuning onT = 32 threads. Symbols N (p<0.005) and 4 (p<0.01)
denote the cases where PG������ is signi�cantly better than
the baseline w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt Grid Randd
COIL 0.9044 0.8197N 0.6311N 0.6954N
USPS 0.9154 0.87794 0.8746N 0.7619N
MNIST 0.8634 0.8006N 0.7932N 0.6668N
UMIST 0.8789 0.7756N 0.7124N 0.6405N
Y��� 0.6859 0.5671N 0.5925N 0.5298N

threads over time, and test accuracy follows closely. As such, test
error drops in time. Grid search has a near-�at curve as it uses the
same kernel bandwidth on all dimensions, therefore, more time does
not help in handling noise. Randd error seems to drop slightly but
stabilizes at a high value, demonstrating its limited ability to guess
parameters in high dimensions with noise. Overall, PG������ out-
performs competition signi�cantly in this high dimensional noisy
se�ing as well. Its performance is particularly noteworthy on Y���,
which has small n = 320 but large 2d > 2K half of which are noise.

Finally, Figure 6 shows PG������’s estimated hyperparameters,
a1:d and a(d+1):2d (avg’ed over 10 samples), demonstrating that the
noisy features (d + 1) : 2d receive notably lower weights.

6 CONCLUSION
In this work we addressed the graph structure estimation problem
as part of relational semi-supervised inference. It is now well-
understood that graph construction from point-cloud data has
critical impact on learning algorithms [6, 19]. To this end, we
�rst proposed a learning-to-rank based objective parameterized
by di�erent weights per dimension and derived its gradient-based
learning (§4.1). We then showed how to integrate this type of adap-
tive local search within a parallel framework that early-terminates
searches based on relative performance, in order to dynamically
allocate resources (time and processors) to those with promising
con�gurations (§4.2). Put together, our solution PG������ is a hy-
brid that strategically navigates the hyperparameter search space.
What is more, PG������ is scalable in dimensionality and number
of samples both in terms of runtime and memory requirements.

�rough extensive experiments on (publicly available) multi-
class classi�cation tasks, we demonstrated that PG������ signi�-
cantly outperforms a variety of existing graph estimation schemes,
as well as e�ectively handles high dimensional datasets with noisy
dimensions. We open-source the (parallel) implementation of our
PG������ at h�ps://bit.ly/2IZmPCs.

As future work we plan to deploy PG������ on a distributed
platform like Apache Spark, and generalize the ideas to other graph-
based learning problems such as graph-regularized regression.

REFERENCES
[1] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold Regu-

larization: A Geometric Framework for Learning from Labeled and Unlabeled
Examples. Journal of Machine Learning Research 7 (2006), 2399–2434.

[2] Avrim Blum and Shuchi Chawla. 2001. Learning from Labeled and Unlabeled
Data using Graph Mincuts.. In ICML. 19–26.

CIKM 2018, October 2018, Turin, Italy

Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.
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Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwri�en digits
MNIST 1000 784 10 handwri�en digits
UMIST 575 644 20 faces (di�. race/gender/etc.)
Y��� 320 1024 5 faces (di�. illuminations)

Note that Grid and Randd are standard techniques employed
by practitioners most typically. MinEnt is perhaps the �rst graph-
learning strategy for SSL which was proposed as part of the Gauss-
ian Random Fields SSL algorithm. It estimates hyperparameters by
minimizing the entropy of the solution on unlabeled instances via
gradient updates. IDML uses and iteratively enlarges the labeled
data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric
learning is prohibitively expensive for a full matrix. We generalized
these baselines to multi-class and implemented them ourselves. We
open-source (1)–(4) along with our PG������ implementation.3
Finally, AEW is one of the most recent techniques on graph learn-
ing, which extends the LLE [23] idea by restricting the regression
coe�cients (i.e., edge weights) to be derived from Gaussian kernels.
We use their publicly-available implementation.9

5.2 Empirical Results
5.2.1 Single-thread Experiments. We �rst evaluate the proposed

PG������ against the baselines on a fair ground using a single
thread, since the baselines do not leverage any parallelism. Single-
thread PG������ is simply the G������� as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random
as the labeled set L, under the constraint that all classes must be
present in L and treat the remaining unlabeled data as the test
set. For each dataset, 10 versions with randomly drawn labeled
sets are created and the average test accuracy across 10 runs is
reported. Each run starts with a di�erent random con�guration of
hyperparameters. For PG������, Grid, and Randd , we choose (a
small) k 2 [5, 20]. � for Grid and MinEnt10, and am ’s for PG������,
Randd , and AEW are chosen from [0.1d̄, 10d̄], where d̄ is the mean
Euclidean distance across all pairs. Other hyperparameters of the
baselines, like � for MinEnt and � and � for IDML, are chosen as in
their respective papers. Graph learning is performed for 15 minutes,
around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods
on each dataset, avg’ed over 10 runs with random labeled sets.
PG������ outperforms its competition signi�cantly, according to
the paired Wilcoxon signed rank test on a vast majority of the
cases—only on the two handwri�en digit recognition tasks there
is no signi�cant di�erence between PG������ and MinEnt. Not
only PG������ is signi�cantly superior to existing methods, its
performance is desirably high in absolute terms. It achieves 93%
prediction accuracy on the 20-class UMIST, and 82% on the 210-
dimensional Y��� dataset.

Next we investigate how the prediction performance of the com-
petingmethods changes by varying labeling percentage. To this end,

9h�p://www.bic.kyoto-u.ac.jp/pathway/krsym/so�ware/MSALP/MSALP.zip
10MinEnt initializes a uniformly, i.e., all am ’s are set to the same � initially [30].

Table 2: Test accuracy with 10% labeled data, avg’ed across
10 random samples; 15 mins of hyperparameter tuning on
single thread. Symbols N (p<0.005) and 4 (p<0.01) denote the
cases where PG������ is signi�cantly better than the base-
line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116N 0.7508N 0.9100N 0.8929N 0.8764N
USPS 0.9066 0.9088 0.8565N 0.8951N 0.8732N 0.8169N
MNIST 0.8241 0.8163 0.78014 0.7828N 0.7550N 0.7324N
UMIST 0.9321 0.8954N 0.89734 0.8975N 0.8859N 0.8704N
Y��� 0.8234 0.76484 0.7331N 0.7386N 0.6576N 0.6797N
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Figure 4: Test error (avg’ed across 3 random samples) as la-
beled data percentage is increased up to 50%. PG������ per-
forms the best in many cases, and consistently ranks in top
two among competitors on each dataset and each labeling %.

we repeat the experiments using up to 50% labeled data. As shown
in Figure 4, test error tends to drop with increasing amount of labels
as expected. PG������ achieves the lowest error in many cases
across datasets and labeling ratios. MinEnt is the closest competition
on USPS andMNIST, which however ranks lower on UMIST and
Y���. Similarly, IDML is close competition on UMIST and Y���,
which however performs poorly on COIL and USPS. In contrast,
PG������ consistently performs near the top.

We quantify the above more concretely, and provide the test
accuracy for each labeling % in Table 3, averaged across random
samples from all datasets, along with results of signi�cance tests.
We also give the average rank per method, as ranked by test error
(hence, lower is be�er).

PG������ signi�cantly outperforms all competing methods in
accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank
test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.
On average, MinEnt is the closest competition, followed by AEW.
Despite being supervised, IDML does not perform on par. �is may
be due to labeled data not being su�cient to learn a proper metric in
high dimensions, and/or the labels introduced during self-learning
being noisy. We also �nd Grid and Randd to rank at the bo�om,
suggesting that learning the graph structure provides advantage
over these standard techniques.

5.2.2 Parallel Experiments with Noisy Features. Next we fully
evaluate PG������ in the parallel se�ing as proposed in Algo. 2.

Single-thread Results
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Table 3: Average test accuracy and rank (w.r.t. test error) of
methods across datasets for varying labeling %. N (p<0.005)
and 4 (p<0.01) denote the cases where PG������ is signi�-
cantly better w.r.t. the paired Wilcoxon signed rank test.

Labeled PG�L MinEnt IDML AEW Grid Randd
10% acc. 0.8819 0.8594N 0.8036N 0.8448N 0.8129N 0.7952N

rank 1.20 2.20 4.40 2.80 4.80 5.60
20% acc. 0.8900 0.8504N 0.8118N 0.8462N 0.8099N 0.8088N

rank 1.42 2.83 4.17 2.92 4.83 4.83
30% acc. 0.9085 0.8636N 0.8551N 0.8613N 0.8454N 0.8386N

rank 1.33 3.67 3.83 3.17 4.00 5.00
40% acc. 0.9153 0.8617N 0.8323N 0.8552N 0.8381N 0.8303N

rank 1.67 3.67 3.50 3.67 4.00 4.50
50% acc. 0.9251 0.87004 0.8647N 0.8635N 0.8556N 0.8459N

rank 1.50 3.17 3.83 3.67 4.00 4.83

Graph learning is especially bene�cial for SSL in noisy scenarios,
where there exist irrelevant or noisy features that would cause
simple graph construction methods like kNN and Grid go astray. To
the e�ect of making the classi�cation tasks more challenging, we
double the feature space for each dataset, by adding 100% new noise
features with values drawn randomly from standard Normal (0, 1).
Moreover, this provides a ground truth on the importance of fea-
tures, based on which we are able to quantify how well our PG�
����� recovers the necessary underlying relations by learning the
appropriate feature weights.

Setup: We report results comparing PG������ only withMinEnt,
Grid, and Randd—in this setup, IDML failed to learn a metric in
several cases due to degeneracy and the authors’ implementation9
of AEW gave out-of-memory errors in many cases. �is however
does not take awaymuch, sinceMinEnt proved to be the second-best
a�er PG������ in the previous section (see Table 3) and Grid and
Randd are the typical methods used o�en in practice.

Given a budget B units of time and T parallel threads for our
PG������, each competing method is executed for a total of BT
units, i.e. all methods receive the same amount of processing time.11
Speci�cally, MinEnt is started in T threads, each with a random
initial con�guration that runs until time is up (i.e., to completion,
no early-terminations). Grid picks (k,� ) from the 2-d grid that
we re�ne recursively, that is, split into �ner resolution containing
more cells as more allocated time remains, while Randd continues
picking random combinations of (k,a1:d ). When the time is over,
each method reports the hyperparameters that yield the highest
validation accuracy, using which the test accuracy is computed.

Results: Table 4 presents the average test accuracy over 10 ran-
dom samples from each dataset, using T = 32. We �nd that despite
32⇥ more time, the baselines are crippled by the irrelevant features
and increased dimensionality. In contrast, PG������ maintains no-
tably high accuracy that is signi�cantly be�er than all the baselines
on all datasets at p = 0.01.

Figure 5 (a) shows how the test error changes by time for all
methods on average, and (b) depicts the validation and the cor-
responding test accuracies for PG������ on an example run. We
see that PG������ gradually improves validation accuracy across

11All experiments executed on a Linux server equipped with 96 Intel Xeon CPUs at
2.1 GHz and a total of 1 TB RAM, using Matlab R2015b Distributed Computing Server.

Table 4: Test accuracy on datasets with 100% added noise fea-
tures, avg’ed across 10 samples; 15 mins of hyperparameter
tuning onT = 32 threads. Symbols N (p<0.005) and 4 (p<0.01)
denote the cases where PG������ is signi�cantly better than
the baseline w.r.t. the paired Wilcoxon signed rank test.

Dataset PG�L�� MinEnt Grid Randd
COIL 0.9044 0.8197N 0.6311N 0.6954N
USPS 0.9154 0.87794 0.8746N 0.7619N
MNIST 0.8634 0.8006N 0.7932N 0.6668N
UMIST 0.8789 0.7756N 0.7124N 0.6405N
Y��� 0.6859 0.5671N 0.5925N 0.5298N

threads over time, and test accuracy follows closely. As such, test
error drops in time. Grid search has a near-�at curve as it uses the
same kernel bandwidth on all dimensions, therefore, more time does
not help in handling noise. Randd error seems to drop slightly but
stabilizes at a high value, demonstrating its limited ability to guess
parameters in high dimensions with noise. Overall, PG������ out-
performs competition signi�cantly in this high dimensional noisy
se�ing as well. Its performance is particularly noteworthy on Y���,
which has small n = 320 but large 2d > 2K half of which are noise.

Finally, Figure 6 shows PG������’s estimated hyperparameters,
a1:d and a(d+1):2d (avg’ed over 10 samples), demonstrating that the
noisy features (d + 1) : 2d receive notably lower weights.

6 CONCLUSION
In this work we addressed the graph structure estimation problem
as part of relational semi-supervised inference. It is now well-
understood that graph construction from point-cloud data has
critical impact on learning algorithms [6, 19]. To this end, we
�rst proposed a learning-to-rank based objective parameterized
by di�erent weights per dimension and derived its gradient-based
learning (§4.1). We then showed how to integrate this type of adap-
tive local search within a parallel framework that early-terminates
searches based on relative performance, in order to dynamically
allocate resources (time and processors) to those with promising
con�gurations (§4.2). Put together, our solution PG������ is a hy-
brid that strategically navigates the hyperparameter search space.
What is more, PG������ is scalable in dimensionality and number
of samples both in terms of runtime and memory requirements.

�rough extensive experiments on (publicly available) multi-
class classi�cation tasks, we demonstrated that PG������ signi�-
cantly outperforms a variety of existing graph estimation schemes,
as well as e�ectively handles high dimensional datasets with noisy
dimensions. We open-source the (parallel) implementation of our
PG������ at h�ps://bit.ly/2IZmPCs.

As future work we plan to deploy PG������ on a distributed
platform like Apache Spark, and generalize the ideas to other graph-
based learning problems such as graph-regularized regression.

REFERENCES
[1] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold Regu-

larization: A Geometric Framework for Learning from Labeled and Unlabeled
Examples. Journal of Machine Learning Research 7 (2006), 2399–2434.

[2] Avrim Blum and Shuchi Chawla. 2001. Learning from Labeled and Unlabeled
Data using Graph Mincuts.. In ICML. 19–26.

Ø IDML failed to learn metric due to degeneracy
ØAEW authors’ implementation threw out-of-memory errors 

24

Parallel results with Noisy Features



25

CIKM 2018, October 2018, Turin, Italy

0 100 200 300 400 500 600 700 800 900
time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r

RS
GS
MinEnt
PG-Learn

COIL

0 100 200 300 400 500 600 700 800 900 1000
time/s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
cu

ra
cy

val acc
test acc

0 100 200 300 400 500 600 700 800 900
time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r

RS
GS
MinEnt
PG-Learn

USPS

0 100 200 300 400 500 600 700 800 900 1000
time/s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
cu

ra
cy

val acc
test acc

0 100 200 300 400 500 600 700 800 900
time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r

RS
GS
MinEnt
PG-Learn

MNIST

0 100 200 300 400 500 600 700 800 900 1000
time/s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
cu

ra
cy

val acc
test acc

0 100 200 300 400 500 600 700 800 900
time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r

RS
GS
MinEnt
PG-Learn

UMIST

0 100 200 300 400 500 600 700 800 900 1000
time/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
cu

ra
cy

val acc
test acc

0 100 200 300 400 500 600 700 800 900
time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r

RS
GS
MinEnt
PG-Learn

YALE

0 100 200 300 400 500 600 700 800 900 1000
time/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
cu

ra
cy

val acc
test acc

(a) test error by time (b) PG������ val.&test acc. by time

Figure 5: (a) Test error vs. time (avg’ed across 10 runs w/ ran-
dom samples) comparing PG������ with baselines on noisy
datasets; (b) PG������’s validation and corresponding test ac-
curacy over time as it executes Algo. 2 on 32 threads (1 run).
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