A Quest for Structure:

Jointly Learning Graph Structure &
Semi-Supervised Classification

Xuan Wu?*, Lingxiao Zhao*, Leman Akoglu

*: Equal Contribution

Carnegie Mellon University

Agenda

* Problem Introduction:
* Motivation for Learning Graph
* Graph-based Semi-supervised Learning (SSL)
* Existing Solution For Getting Graph for SSL

* PG-Learn: Parallel Graph Learning for SSL

* Gradient-based Graph Learning for SSL
* Adaptive Parallel Search

* Empirical Evaluation

e Datasets & Baselines
e Result

Carnegie Mellon University

Motivation

* Explicit, well defined graph
* Limited and have noise
e Usually just connections (No weights)
e “Right” graph for any tasks? No!

* Implicit graph
* Not given the data
* Need to be constructed based on domain knowledge
* Needed for lots of algorithms

Question: how to learn a graph for a particular task,
from raw, high-dimensional, and noisy data?

Carnegie Mellon University

Background: SSL

* Semi-supervised Learning

®
° 75 AAA
O

® o A
o A

° 9% A .‘..‘..
Q 0
O .:O A‘O .0
: O.. .A..
K Iabeled+un|abe|ed data semi-supervised learning /

Carnegie Mellon University

Background: Graph-based SSL

* Given

 set L of labeled nodes '

* set U of unlabeled nodes .

* a graph W of all nodes
* Assign

* Label Y or Class Probability F to unlabeled nodes T'=L UU
 Solution Closed-form

arg min tr((F — Y) (F-Y)+ O(FTLF) @ B = (1+al)" Y

FERnXC
L—1_D"2WD-1/2 g Iterative solution
D := diag(W1,) FUD ,UPF +(1-p)Y

Carnegie Mellon University

What you would do for W?

Most typical way:
* Getting weights between pairs by 2

their “similarity”, using RBF kernel N\ .
). Xi sim(x;, X)
K (xi,xj) = exp(—|lx; —x;||/(20%))
* Sparsification
e e-neighborhood

* KNN

* Hyperparameters: (o, €) or (o, k)
e Random search on cross validation
e Grid search on cross validation

Carnegie Mellon University

W Matters!

“SSL algorithms are strongly affected by the graph
sparsification parameter value and the choice of the
adjacency graph construction and weighted matrix
generation methods.”

Influence of Graph Construction on Semi-supervised Learning.
Celso Andre R. de Sousa, Solange O. Rezende, Gustavo E. A. P. A.
Batista. ECML/PKDD 2013.

Carnegie Mellon University

Existing Solutions

* Unsupervised
* Locally Linear Embedding [Roweis&Soul Science 2000]
* b-matching [Jebara+ ICML 2009]
* Low-Rank Representation [Liu+ /CML 2010]
* Anchor Graph Regularization [Wang+ TKDE 2016]

No use of labels, not graph Learning
* Supervised

* Distance metric learning [Dhillon+ ACL 2010]
* Multiple kernel learning [Li+ [JCAI 2016]
* Constrained self-representation [Zhuang+, Image Proc. 2017]

Not task-driven and/or scalable

Carnegie Mellon University

Agenda

* Problem Introduction:
* Motivation for Learning Graph
* Graph-based Semi-supervised Learning (SSL)
* Existing Solution For Getting Graph for SSL

* PG-Learn: Parallel Graph Learning for SSL

* Gradient-based Graph Learning for SSL
* Adaptive Parallel Search

* Empirical Evaluation

e Datasets & Baselines
e Result

Carnegie Mellon University

Parameterize W More Generally

* Single bandwidth is not enough
*Recall: K (x;,x;) = exp(—|lx; —x;ll/(20%))
* Different feature may prefer different bandwidth

* Dimension-specific kernel bandwidth

4 (xim — Xjm)*
K(xi,xj) =exp| — Z 5
m=1 Om

Wi =exp (- (x; —x;)TA (x; - xj))
A :=diag(a) Amm = am = 1/0731
* Difficulty
* Number of parameters: d can be more than thousands
random search / grid search won’t work
Carnegie Mellon University

Problem Formulation

* Given
D = {(x1,y1)s---» (XL Y1), X115+ 5 X 4y

* Infer
« A :=diag(a) : bandwidths per dimension =
« k: sparsity of kNN graph (kNN is used to sparse W) _|~ W
* Labels for unlabeled points — Task

Jointly learning a graph W and solving SSL task,
so that W captures “right” structure needed by the task.

Carnegie Mellon University

Link Quality of W with Task

* Define a loss g of W over F*

F* = arg min tr((F- Y)!(F-Y) + aF! LF)
— (I + CfL)_lY ' A function of W

* F* is "better” means W has better quality

 Using validation set V c L
* “better” means smaller "difference” between F* and Y (true label)
over validation set.

g(F*) over validation set measures the quality of W of the task
[the smaller the better]

Carnegie Mellon University

Validation Loss g(F*)

Many ways to define the validation loss

* As long as it can measure the different between F* and Y
e.g. gA((V) — ZUE(V(l o F'UCU)
* We choose a pairwise ranking-based loss

* Validation set is quiet small

* Pairwise makes full use of information
Node inside ¢ Node outside ¢

ga (V) = Z —10g<f\F@>c' - Fale)

c'=1 (v,0"):veV,,
v E(V\(V / Prob of ranklng v above V’,
based on output F

Carnegie Mellon University

Minimizing g
* Use gradient descent
* F* has closed form, can get gradient w.r.t. W

* Deriving gradient is omitted, please see our paper
* Make full use of sparsity

* Complexity
 Computational complexity ¢« Memory complexity
O(n[kctd + dk* + log n]) O(knd)
k: #NNs, c: #classes, t: # power method iterations
* [inear in dimensionality, « linearin both
log-linear in sample size dimensionality & size

Carnegie Mellon University

Summarize So Far
1: Initialize k and a (vector containing a,,’s); t:=0
2: repeat
3: Compute F (£) using stgraph on current a,, s

4: Compute gradient ng based on F) for each ay,

5. Update an,’s by alt+1) .= q(t) _ yg—g; t:=1t+1

6: until a,, s have converged

Carnegie Mellon University

Adaptive Parallel Search

How about k and initial a?

* Non-convex problem: Different initial point matters

e Sparsity k always matters a lot

Solution

* Try many effective configurations as much as possible in limited time
A simple & effective idea — Successive Halving [lamieson, AISTATS 2016]

1. pick a set of (hyperparameter) configurations
run for a fixed amount of time (i.e. iterations)
evaluate configurations (metric of interest) Oth- order

keep the best half (terminate the worst half)
repeat 2.—4. until one configuration remains

Lnnh W

Carnegie Mellon University

Adaptive Parallel Search

How about k and initial a?

* Non-convex problem: Different initial point matters

e Sparsity k always matters a lot

Solution

* Try many effective configurations as much as possible in limited time.
A simple & effective idea — Successive Halving [lamieson, AISTATS 2016]

* Improve it by fully parallel
After halving, restart new configurations to reuse threads

* And
Not Oth — order anymore, our solution combined with 15t —order optimization

Carnegie Mellon University

18

accuracy

0.8

0.7

0.6

O
o

o
A

o
&

0.2 L

0.1

» Test accuracy improves by time

P Nmm——

val acc
test acc

— \

» Many poor configurations

| | | | | | | | |

100 200 300 400 500 600 700 800 900
time/s

1000

Agenda

* Problem Introduction:
* Motivation for Learning Graph
* Graph-based Semi-supervised Learning (SSL)
* Existing Solution For Getting Graph for SSL

* PG-Learn: Parallel Graph Learning for SSL

* Gradient-based Graph Learning for SSL
* Adaptive Parallel Search

* Empirical Evaluation

e Datasets & Baselines
e Result

Carnegie Mellon University

Datasets

Name | #ptsn #dimd #clsc description
COIL 1500 241 6 objects with various shapes
USPS 1000 256 10 handwritten digits
MNIST 1000 784 10 handwritten digits
UMIST 575 644 20 faces (diff. race/gender/etc.)
YALE 320 1024 5 faces (diff. illuminations)

Baselines

(1) Grid search (GS): k-NN graph with RBF kernel where k and
strawmen bandwidth o are chosen via grid search,
™ (2) Randy search (RS): k-NN with RBF kernel where k and different
bandwidths a;.; are randomly chosen,
gradient-based (3) MinEnt: Minimum Entropy based tuning of a;.;’s as proposed
by Zhu et al. [30] (generalized to multi-class),
self-representation 4) AEW: Adaptive Edge Weighting by Karasuyama et al. [14]
that estimates ay.4’s through local linear reconstruction, and
metric learning (5) IDML: Iterative self-learning scheme combined with distance
metric learning by Dhillon et al. [8].

21

Single-thread Results

10% labeled data

avg’ed across 10 random samples

Dataset || PG-LRN | MinEnt | IDML | AEW Grid Rand
COIL 0.9232 | 0.91164 | 0.75084 | 0.91004 | 0.89294 | 0.87644
USPS 0.9066 | 0.9088 | 0.8565% | 0.89514 | 0.87324 | 0.81694
MNIST || 0.8241 | 0.8163 | 0.7801% | 0.78284 | 0.75504 | 0.73244
UMIST || 0.9321 | 0.89544% | 0.8973%2 | 0.8975% | 0.88594 | 0.87044
YALE 0.8234 | 0.7648” | 0.73314 | 0.73864 | 0.65764 | 0.67974

Symbols A (p<0.005) and A (p<0.01)

w.r.t. the paired Wilcoxon signed rank test.

Increasing labeling % , results averaged across all datasets

23

Single-thread Results

Labeled || PG-L | MinEnt | IDML AEW Grid | Rand,
10% acc. || 0.8819 | 0.85944 | 0.80364 | 0.84484 | 0.81294 | 0.79524
rank || 1.20 2.20 4.40 2.80 4.80 5.60
20% acc. || 0.8900 | 0.85044 | 0.81184 | 0.84624 | 0.80994 | 0.80884
rank || 1.42 2.83 4.17 2.92 4.83 4.83
30% acc. || 0.9085 | 0.86364 | 0.85514 | 0.86134 | 0.84544 | 0.83864
rank || 1.33 3.67 3.83 3.17 4.00 5.00
40% acc. || 0.9153 | 0.86174 | 0.83234 | 0.85524 | 0.83814 | 0.83034
rank || 1.67 3.67 3.50 3.67 4.00 4.50
50% acc. || 0.9251 | 0.87002 | 0.86474 | 0.86354% | 0.85564 | 0.84594
rank || 1.50 3.17 3.83 3.67 4.00 4.83

Symbols A (p<0.005) and A (p<0.01)
w.r.t. the paired Wilcoxon signed rank test.

Parallel results with Noisy Features

* Double the feature space by adding 100% new columns with

Normal(0,1) noise

Dataset || PG-LrRN | MinEnt | Grid Rand
COIL 0.9044 | 0.81974% | 0.63114 | 0.69544
USPS 0.9154 | 0.8779% | 0.87464 | 0.76194
MNIST || 0.8634 | 0.8006% | 0.79324 | 0.66684
UMIST || 0.8789 | 0.7756% | 0.71244 | 0.64054
YALE 0.6859 | 0.56714% | 0.59254 | 0.52984

» IDML failed to learn metric due to degeneracy
» AEW authors’ implementation threw out-of-memory errors

24

Parallel results with Noisy Features

investigating learned feature weights

3 =

=5 ¥ .

|

=

® 4 -

Z3h]

— 2 | = l |

g2] ! S v :

g T . i

1 i ' + ' 3

= : i =1

Fol = & D+ Lo = + T =

@ USPS USPS MNIST MNIST COIL COIL YALE YALE UMIST UMIST
original noise original noise original noise original noise original noise

» PG-Learn estimates lower weights for noisy columns

Code, Data, Slides

N 3 PG-Learn
(S

‘ https://pg-learn.github.io

7
¢
LY

Thanks!

Conference attending is funded by travel grant from SIGIR

26

https://pg-learn.github.io/

