A Quest for Structure: Jointly Learning Graph Structure & Semi-Supervised Classification

Xuan Wu*, Lingxiao Zhao*, Leman Akoglu

Carnegie Mellon University

*: Equal Contribution

Agenda

Carnegie Mellon University

• Problem Introduction:

- Motivation for Learning Graph
- Graph-based Semi-supervised Learning (SSL)
- Existing Solution For Getting Graph for SSL
- PG-Learn: Parallel Graph Learning for SSL
 - Gradient-based Graph Learning for SSL
 - Adaptive Parallel Search

Empirical Evaluation

- Datasets & Baselines
- Result

Motivation

• Explicit, well defined graph

- Limited and have noise
- Usually just connections (No weights)
- "Right" graph for any tasks? No!
- Implicit graph
 - Not given the data
 - Need to be constructed based on domain knowledge
 - Needed for lots of algorithms

Question: how to learn a graph for a particular task, from raw, high-dimensional, and noisy data?

Background: SSL

Semi-supervised Learning

Background: Graph-based SSL

• Given

- set L of labeled nodes
- set U of unlabeled nodes
- a graph W of all nodes
- Assign
 - Label **Y** or Class Probability **F** to unlabeled nodes $T = L \cup U$

Solution

$$\arg\min_{F\in\mathbb{R}^{n\times c}} tr((F-Y)^T(F-Y) + \alpha F^T LF)$$

$$\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$$

 $D := diag(W1_n)$

eled nodes $T = L \cup$ Close $\mathbf{F}^* = ($

 $\frac{\text{Closed-form}}{\mathbf{F}^* = (\mathbf{I} + \alpha \mathbf{L})^{-1} \mathbf{Y}}$

Iterative solution

$$\boldsymbol{F}^{(t+1)} \leftarrow \boldsymbol{\mu} \boldsymbol{P} \boldsymbol{F}^{(t)} + (1-\boldsymbol{\mu}) \boldsymbol{Y}$$

What you would do for W?

 \mathbf{x}_{j}

Carnegie Mellon University

 \mathbf{X}_i

 $sim(\mathbf{x}_i, \mathbf{x}_j)$

Most typical way:

• Getting weights between pairs by their "similarity", using RBF kernel

$$\mathcal{K}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|/(2\sigma^2))$$

- Sparsification
 - ε-neighborhood
 - kNN
- Hyperparameters: (σ, ε) or (σ, k)
 - Random search on cross validation
 - Grid search on cross validation

W Matters!

"SSL algorithms are strongly affected by the graph sparsification parameter value and the choice of the adjacency graph construction and weighted matrix generation methods."

Influence of Graph Construction on Semi-supervised Learning. Celso Andre R. de Sousa, Solange O. Rezende, Gustavo E. A. P. A. Batista. ECML/PKDD 2013.

Existing Solutions

Unsupervised

- Locally Linear Embedding [Roweis&Soul Science 2000]
- b-matching [Jebara+ ICML 2009]
- Low-Rank Representation [Liu+ ICML 2010]
- Anchor Graph Regularization [Wang+ TKDE 2016]

No use of labels, not graph Learning

Supervised

•

- Distance metric learning [Dhillon+ ACL 2010]
- Multiple kernel learning [Li+ IJCAI 2016]
- Constrained self-representation [Zhuang+, Image Proc. 2017]

Not task-driven and/or scalable

Agenda

• Problem Introduction:

- Motivation for Learning Graph
- Graph-based Semi-supervised Learning (SSL)
- Existing Solution For Getting Graph for SSL
- PG-Learn: Parallel Graph Learning for SSL
 - Gradient-based Graph Learning for SSL
 - Adaptive Parallel Search

Empirical Evaluation

- Datasets & Baselines
- Result

Task-driven Effective Scalable No hyperparameter to tune

Parameterize W More Generally

- Single bandwidth is not enough
 - Recall: $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|/(2\sigma^2))$
 - Different feature may prefer different bandwidth
- Dimension-specific kernel bandwidth

$$\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\sum_{m=1}^d \frac{(\mathbf{x}_{im} - \mathbf{x}_{jm})^2}{\sigma_m^2}\right)$$
$$W_{ij} = \exp\left(-(\mathbf{x}_i - \mathbf{x}_j)^T A (\mathbf{x}_i - \mathbf{x}_j)\right)$$
$$A := diag(\mathbf{a}) \quad A_{mm} = a_m = 1/\sigma_m^2$$

- Difficulty
 - Number of parameters: d can be more than thousands random search / grid search won't work

Problem Formulation

• Given $\mathcal{D} := \{(x_1, y_1), \dots, (x_l, y_l), x_{l+1}, \dots, x_{l+u}\}$

- Infer
 - A := diag(a) : bandwidths per dimension
 - k : sparsity of kNN graph (kNN is used to sparse W)
 - Labels for unlabeled points

- Task

Carnegie Mellon University

Jointly learning a graph W and solving SSL task, so that W captures "right" structure needed by the task.

Link Quality of W with Task

• Define a loss g of W over F*

F

$$= \arg \min_{\substack{F \in \mathbb{R}^{n \times c}}} tr((F - Y)^T (F - Y) + \alpha F^T LF)$$

= $(\mathbf{I} + \alpha \mathbf{L})^{-1} \mathbf{Y}$ A function of W

Task-driven

Carnegie Mellon University

• F* is "better" means W has better quality

• Using validation set $\ \mathcal{V} \subset \mathcal{L}$

 "better" means smaller "difference" between F* and Y (true label) over validation set.

g(F*) over validation set measures the quality of W of the task [the smaller the better]

Validation Loss g(F*)

Many ways to define the validation loss

 \bullet As long as it can measure the different between F^{\ast} and Y

e.g.
$$g_A(\mathcal{V}) = \sum_{\upsilon \in \mathcal{V}} (1 - F_{\upsilon c_{\upsilon}})$$

- We choose a pairwise ranking-based loss
 - Validation set is quiet small
 - Pairwise makes full use of information Node inside c Node outside c

$$g_{A}(\mathcal{V}) = \sum_{c'=1}^{c} \sum_{\substack{(v,v'): v \in \mathcal{V}_{c'}, \\ v' \in \mathcal{V} \setminus \mathcal{V}_{c'}}} -\log \sigma(F_{\mathcal{O}c'} - F_{\mathcal{O}c'})$$
Prob of ranking v above v', based on output F
Carnegie Mellon Universi

Minimizing g

Use gradient descent

Scalable

- F* has closed form, can get gradient w.r.t. W
- Deriving gradient is omitted, please see our paper
- Make full use of sparsity
- Complexity
 - Computational complexity Memory complexity

 $O(n[kctd + dk^2 + \log n])$

O(knd)

k: #NNs, c: #classes, t: # power method iterations

- linear in dimensionality, log-linear in sample size
- linear in both dimensionality & size

Summarize So Far

- 1: Initialize k and a (vector containing a_m 's); t := 0
- 2: repeat
- 3: Compute $F^{(t)}$ using kNN graph on current a_m 's 4: Compute gradient $\frac{\partial g}{\partial a_m}$ based on $F^{(t)}$ for each a_m

- 5: Update a_m 's by $a^{(t+1)} := a^{(t)} \gamma \frac{\mathrm{d}g}{\mathrm{d}a}; \quad t := t+1$
- 6: **until** a_m 's have converged

Adaptive Parallel Search

How about **k** and **initial a**?

- Non-convex problem: Different initial point matters
- Sparsity k always matters a lot

Solution

• Try many **effective** configurations as much as possible in limited time A simple & effective idea – **Successive Halving** [Jamieson, AISTATS 2016]

- 1. pick **a set** of (hyperparameter) configurations
- 2. run for a fixed amount of time (i.e. iterations)
- 3. evaluate configurations (metric of interest)
- 4. keep the **best half** (terminate the worst half)
- 5. repeat 2. 4. until **one** configuration remains

Adaptive Parallel Search

How about **k** and **initial a**?

No hyperparameter to tune

Carnegie Mellon University

- Non-convex problem: Different initial point matters
- Sparsity k always matters a lot

Solution

- Try many **effective** configurations as much as possible in limited time. A simple & effective idea – **Successive Halving** [Jamieson, AISTATS 2016]
- Improve it by fully parallel

After halving, restart new configurations to reuse threads

• And

Not Oth – order anymore, our solution combined with 1st –order optimization

Agenda

• Problem Introduction:

- Motivation for Learning Graph
- Graph-based Semi-supervised Learning (SSL)
- Existing Solution For Getting Graph for SSL

• PG-Learn: Parallel Graph Learning for SSL

- Gradient-based Graph Learning for SSL
- Adaptive Parallel Search

Empirical Evaluation

- Datasets & Baselines
- Result

Task-driven Scalable No hyperparameter to tune Effective

Datasets

Name	#pts <i>n</i>	# dim <i>d</i>	#cls c	description
COIL	1500	241	6	objects with various shapes
USPS	1000	256	10	handwritten digits
MNIST	1000	784	10	handwritten digits
UMIST	575	644	20	faces (diff. race/gender/etc.)
YALE	320	1024	5	faces (diff. illuminations)

Baselines

strawmen	(1)	<i>Grid</i> search (GS): <i>k</i> -NN graph with RBF kernel where <i>k</i> and bandwidth σ are chosen via grid search,
strawmen		bandwidth σ are chosen via grid search,
	(2)	$Rand_d$ search (RS): k-NN with RBF kernel where k and different
		bandwidths $a_{1:d}$ are randomly chosen,
gradient-based	(3)	<i>MinEnt</i> : Minimum Entropy based tuning of $a_{1:d}$'s as proposed
		by Zhu et al. [30] (generalized to multi-class),
self-representation	(4)	AEW: Adaptive Edge Weighting by Karasuyama et al. [14]
		that estimates $a_{1:d}$'s through local linear reconstruction, and
metric learning	(5)	<i>IDML</i> : Iterative self-learning scheme combined with distance
		metric learning by Dhillon et al. [8].

Single-thread Results

10% labeled data avg'ed across 10 random samples

Dataset	PG-Lrn	MinEnt	IDML	AEW	Grid	Rand _d
COIL	0.9232	0.9116	0.7508▲	0.9100▲	0.8929	0.8764▲
USPS	0.9066	0.9088	0.8565	0.8951	0.8732	0.8169
MNIST	0.8241	0.8163	$0.7801^{ riangle}$	0.7828	0.7550	0.7324
UMIST	0.9321	0.8954	0.8973 [△]	0.8975	0.8859	0.8704
YALE	0.8234	$0.7648^{ riangle}$	0.7331	0.7386	0.6576	0.6797

Symbols \blacktriangle (*p*<0.005) and \triangle (*p*<0.01) w.r.t. the paired Wilcoxon signed rank test.

Single-thread Results

Increasing labeling %, results averaged across all datasets

Labeled	PG-L	MinEnt	IDML	AEW	Grid	Rand _d
10% acc.	0.8819	0.8594▲	0.8036	0.8448	0.8129	0.7952▲
rank	1.20	2.20	4.40	2.80	4.80	5.60
20% acc.	0.8900	0.8504	0.8118	0.8462▲	0.8099	0.8088
rank	1.42	2.83	4.17	2.92	4.83	4.83
30% acc.	0.9085	0.8636	0.8551	0.8613	0.8454	0.8386
rank	1.33	3.67	3.83	3.17	4.00	5.00
40% acc.	0.9153	0.8617	0.8323	0.8552▲	0.8381	0.8303
rank	1.67	3.67	3.50	3.67	4.00	4.50
50% acc.	0.9251	$0.8700^{ riangle}$	0.8647	0.8635	0.8556	0.8459
rank	1.50	3.17	3.83	3.67	4.00	4.83

Symbols \blacktriangle (p<0.005) and \triangle (p<0.01) w.r.t. the paired Wilcoxon signed rank test.

Parallel results with Noisy Features

• Double the feature space by adding 100% new columns with Normal(0,1) noise

Dataset	PG-Lrn	MinEnt	Grid	Rand _d
COIL	0.9044	0.8197▲	0.6311	0.6954▲
USPS	0.9154	$0.8779^{ riangle}$	0.8746	0.7619
MNIST	0.8634	0.8006	0.7932	0.6668
UMIST	0.8789	0.7756	0.7124	0.6405
YALE	0.6859	0.5671	0.5925	0.5298

> IDML failed to learn metric due to degeneracy

> AEW authors' implementation threw out-of-memory errors

Parallel results with Noisy Features

investigating learned feature weights Effective

PG-Learn estimates lower weights for noisy columns

Code, Data, Slides

Task-driven Scalable No need to tune Effective

Thanks!

Conference attending is funded by travel grant from **SIGIR**