
Approximate inference with Graph Neural Networks

Lingxiao Zhao (lingxia1) * 1 Ksenia Korovina (kkorovin) * 1 Wenwen Si (wenwens) * 1

Mark Cheung (markcheu) * 1

Abstract
Probabilistic graphical models are useful for dis-
covering and analyzing structures of many real-
world applications. Belief propagation and other
message-passing algorithms have traditionally
been used to disseminate evidence among the
nodes in the graph. However, these algorithms
may be inefficient for large or loopy graphs. Here,
we expand the work of Yoon et al. (2018), which
uses graph neural network (GNN) as an infer-
ence machine for small-scale networks. We repro-
duce their results and explore how to generalize
GNN to larger graphs with approximate labeling
schemes and custom training procedures.

1. Introduction
Many complex real-world problems can be formulated in
terms of probabilistic models, and the framework of proba-
bilistic graphical models (PGM) assists in both the model-
ing and inference tasks. Graphical models provide a helpful
bridge between probability and graphs, transforming a prob-
abilistic inference task into operations on a graph. However,
exact inference in graphical models is NP-hard, and hence
many approximate inference algorithms have been proposed
to tackle this problem, such as belief propagation, varia-
tional inference, and MCMC.

With the growing interest in deep learning, researchers start
to put effort into combining deep learning and PGM with
techniques such as unrolling inference of PGM using deep
learning (Zheng et al., 2015). In the meantime, a new set of
neural networks working on graphs, graph neural networks
(GNN), shows its ability of handling structured data such
as social networks, chemical molecules, texts, physical sys-
tems, and images. A general framework that summarizes
most existing GNNs is proposed in Gilmer et al. (2017),
which shows that a spatial message passing procedure is the
main component of GNN.

Based on the evidence that GNN and PGM share many

*Equal contribution 1Carnegie Mellon University.

common features, it is natural to conceive that the two di-
rections of work can be related. However, so far, graphical
models and graph neural networks communities have not es-
tablished common ground. In this project, we aim to explore
the applications of graph neural networks, starting with a
recent paper (Yoon et al., 2018) that performs small-scale
inference using a GNN, and trying different ideas to make
it more scalable and powerful.

2. Background & Related Work
PGM and approximate inference. Probabilistic graphical
models provide a efficient statistical framework for model-
ing conditional independencies between random variables.
However, performing inference tasks such as computing
marginals or maximum aposteriori estimate is intractable
in general. Hence, in practice, they are approximated by
techniques like belief propagation, MCMC sampling, and
variational inference (Koller & Friedman, 2009).

Graph Neural Network. Given a graph, a recently pro-
posed general framework called Graph Neural Network
(GNN) is a way to do end-to-end feature engineering over
the graph. GNN is developed based on traditional CNN,
graph signal processing, and message passing/propagation.
A GNN is defined as a two-component structure: a prop-
agation layer and an aggregation layer. These two layers
combine together to shape a single GNN layer, which has
the ability to transform node features and edge features.
Like other neural network architectures, GNN builds an
end-to-end projection by using multiple GNN layers. One
single GNN layer can be written as follows:

hhhl(i,j) = f lv→e(hhh
l
i,hhh

l
j , wij) (propagation) (1)

hhhlj = f le→v({hhhl(i,j)|i ∈ Nj},xxxi) (aggregation) (2)

Where l is the layer number, f lv→e and f le→v are
parametrized function such like neural network, hhhl(i,j) is the
propagated information on each edge, and hhhlj is the aggre-
gated information for each node. Structured input process-
ing models within the GNN framework have shown excel-
lent performance in a wide range of tasks, such as graph em-
bedding (Hamilton et al., 2017), semi-supervised learning
(Kipf & Welling, 2016), relational learning (Schlichtkrull
et al., 2018), and molecular classification (Gilmer et al.,

Approximate inference with Graph Neural Networks

2017). For a comprehensive review of GNN, one can refer
to Bronstein et al. (2017); Battaglia et al. (2018).

Approximate inference + NNs/GNNs There are several
lines of research to efficiently solve inference problems in
PGM by going beyond traditional approximate inference al-
gorithms. First, several works show that using an inference
machine to replace the inference procedure in VI could
directly replace PGM and achieve similar or even better
performance. Ross et al. (2011) proposes to train a series of
predictors to mimic the message-passing procedure of belief
propagation and successfully uses it in point cloud classifica-
tion problem, achieving better performance than mean-field
inference. Heess et al. (2013) trains a neural network to
“predict” the outgoing messages based on incoming mes-
sages of belief propagation. Ramakrishna et al. (2014) uses
inference machine to replace graphical model and achieves
significant improvement in pose estimation task. Lin et al.
(2015) builds a convolutional neural network to estimate the
messages in message passing inference for CRF. Another
line of work focuses on unrolling optimization procedure of
variational inference using neural network. There are many
contributions in this direction, and the most well known is
Zheng et al. (2015) that uses an RNN to replace mean-field
VI with fully-connected CRF.

Yoon et al. (2018) follows the first line that learns an infer-
ence machine using graph neural network (specifically the
paper uses Gated Graph Neural Network). Two kinds of
mappings of belief propagation to GNN are proposed in the
paper: msg-GNN, where each node in the GNN corresponds
to a message in belief propagation; and node-GNN, where
each node maps to a variable in the graphical model.

The total cross-entropy loss L(p, p̂) = −
∑

i qi log p̂i(xi)
is minimized between the exact target (qi = pi(xi) for
marginals or qi = δxi,xi∗ for MAP) and the GNN estimates
p̂i(xi). Experiments focus on small scale binary Markov
random field. Results show GNNs-based inference substan-
tially outperform belief propagation on loopy graphs. The
algorithm is able to generalize out of the training set to
larger graphs and graphs with different structure.

3. Proposed method
Although the aggregation operator of GNN works similarly
as the sum-product computational procedure in (loopy) be-
lief propagation algorithm, the parameters of GNN needed
to be learned in order to do a good approximate inference
over graphical model. To learn a GNN model as inference
machine, the first step is to generate a large enough dataset
where each data point is a combination of a graphical model
(we use MRF) as input, and margianl distributions for all
variables as target. As shown in figure 1, we create lots
of MRFs with varying number of variables and different

factor parameters, then for each MRF, we use some infer-
ence algorithms to get marginal distribution of each variable.
Notice that this is the main bottleneck inside our pipeline,
since getting inference results for large graphical models is
extremely time-consuming. For small graphical models, i.e.
the number of variables is less than 20, we could get infer-
ence labels fast. Once we get a large enough dataset, we
could train the inference machine whose input is a graphical
model and output is marginal distributions. The training
procedure is the same as any neural network based super-
vised learning that minimize the distance between model
output and target by using first-order optimization method
such as SGD and Adam. In next section we talk about how
to design an inference machine based on GNN.

3.1. Baseline: Gated GNN as an Inference Machine
(Yoon et al., 2018)

FROM GRAPHICAL MODEL TO GNN

As Yoon et al. (2018), we focus on inference over binary
Markov Random Field (MRF). Let xxx ∈ {−1,+1}|V| be
the binary variables in MRF where V is the index set of
variables. Then the the joint probability of xxx is:

p(xxx) =
1

Z
exp(bbbTxxx+ xxxTJxxx) =

1

Z

∏
i∈V

φi(xi)
∏

i,j∈V
φij(xi, xj)

(3)

where φi(xi) = ebixi and φij(xi, xj) = eJijxixj are factors
in MRF with parameters bbb and J .

Factor Graph GNN’s Graph

Figure 2. Mapping MRF to graph of GNN

As shown in figure 2, we can map MRF to the graph inside
GNN. To be more specific, we map variables in MRF to
nodes in graph of GNN, and map pairwise dependency of
any two variables in MRF to edge in GNN graph. After
mapping, we get a graph G = (V, E) whose edge eij ∈ E
exists if and only if Jij 6= 0, which can be used by GNN
model. What’s more, MRF’s parameters bbb and J , which
characterize the joint distribution of MRF, becomes input to
GNN model.

Approximate inference with Graph Neural Networks

3

1

5

2

4

3

1

4

2

5

MRF 1

MRF n

1
2
3
4
5

1
2
3
4
5

labels

labels

Dataset: MRFs + Marginals/MAPs

Labeling algorithms

Input:
zero vectors

output:
marginals / MAPs

Gated Graph Neural Net
t = 1: T

target output:
marginals / MAPs

KL-Distance

Figure 1. Pipeline for proposed GNN based approximate inference

DETAILS OF GATED GNN

Let eeeij = [Jij , bi, bj] be the feature of edge eij , and hhhti ∈
RD be the states of node i at t-th time step inside the GGNN
model. We initialize this hidden state to all zeros, hhh0i = 000.
At each step t, we update the edge messagesmmmt+1

i→j ∈ RP

by

mmmt+1
i→j =MLP (hhhti,hhh

t
j , eeeij), (4)

where MLP is a multilayer perceptron with ReLU activation
function. We then calculate neighborhood information for
every node by aggregate all incoming messages:

mmmt+1
i =

∑
j∈Ni

mmmt+1
j→i. (5)

To update hidden state at t+1 for every node, we use a
gated recurrent unit (GRU) that takes t-time hidden state
and aggregated neighborhood information as input:

hhht+1
i = GRU(hhhti,mmm

t+1
i) (6)

After T time steps of sending messages, aggregating mes-
sages, and updating new states, we get the final states hhhTi
with dimensionality D. Another MLP σ with sigmoid acti-
vation function as readout function will be used to map it
to final target yiyiyi of dimensionality 2 for binary MRF. More
formally,

yyyi = σ(hhhTi) (7)

The training of the GNN model is based on minimizing the
KL divergence of prediction yyy and target yyytrue.

3.2. Approximate Labeling for GNN Training

After assessing out-of-the-box scalability of the existing ap-
proach by using a model trained on small dataset, we will try
to address the primary computational issue of GNN-based

method: a need for training on ground truth labels, which
are infeasible to obtain even for graphs of moderate size.
For that we propose three ideas described in this section.

LABEL PROPAGATION

Label Propagation is a semi-supervised algorithm that as-
signs labels to previously unlabeled data points. As the
original implementation in sklearn of this method only
works for graphs with non-negative edges, we devise a mod-
ification that allows us to have a properly normalized distri-
bution after every step of propagation. At the start, we label
several random subgraphs (of user-provided sizes) with ex-
act inference. These labels are propagated to new nodes for
T steps:

p̂i(vi=1)← σ(
∑
j

wj,ip̂j(vj=sign(wj,i))) (8)

Compared to the original label propagation, which updates
as p̂i(vi = v) ∝

∑
j wj,ip̂j(vj = v), v ∈ {−1,+1}, we

now do propagation of probabilities of +1 and −1 over sep-
arate channels (positive and negative edges respectively),
and coalesce them with sigmoid to achieve proper normal-
ization.

Figure 3. Label propagation: start with the circled nodes and prop-
agate the labels following the arrows.

Approximate inference with Graph Neural Networks

COMMUNITY SPLITTING

Instead of randomly selecting subgraphs, we also tried to
split the graph into manageable subgraphs that are least
connected. For detection of subgraphs, we looked into a
variety of methods. A few promising ones are:

1. Girvan–Newman Algorithm (Girvan & Newman,
2002): detects communities by progressively removing
edges based on the betweenness of the edges.

2. Louvain Method (Blondel et al., 2008): iteratively cal-
culates the change in modularity that measures the
density of links inside a community compared to links
between communities.

3. Infomap (Rosvall & Bergstrom, 2008): Infomap opti-
mizes the map equation, which accounts for flow pat-
terns on the network (while modularity maximization
approach does not).

See Appendix section B for the full list.

We first label each community separately, then merge com-
munity base on their probabilities, and biases bbb. The idea
is that for bbb = 0, it is equally probable for the labels to flip
i.e.:

expxxxTJxxx = exp
(
(−xxx)TJ(−xxx)

)
(9)

since J is symmetric.

If ‖bbbsubgraph‖2 ≤ ε, the probability for flipping the labels is
high, then we determine whether to flip based on the aggre-
gated edge between subgraphs starting with the subgraphs
that have the highest ‖bbbsubgraph‖2.

We compare the natural log probability of all combinations
of subgraphs (x and −x) by computing the resulting MAP
based on the new adjacency matrix Jsubgraph, which is sim-
ply:

Jsubgraph = STJS (10)

where S is the community assignment matrix

Figure 4. Community Splitting: Divide the community according
to a community detection algorithm, then perform GNN on each
one separately.

MAXIMUM SPANNING TREE

Another approximation direction is to approximate the
whole graph to a tree that can minimize the information
loss through these process. Thus we select the maximum
spanning tree (MST). We find the maximum absolute weight
spanning tree using Kruskal’s algorithm:

T = argmax
T

∑
(i,j)∈T

|wi,j | (11)

The exact belief propagation can be applied on this MST.

Figure 5. Maximum Spanning Tree: Find absolute weight span-
ning tree using Kruskal’s algorithm, then apply exact belief propa-
gation.

EVALUATION OF METHODS

In order to see how well each of the methods performs (in
combination with GNN) relative to approximate inference
methods, we need a reliable way to estimate true labels, as
at the scale of n > 30 nodes, exact inference is impossible
to use. In order to do that, we will use belief propaga-
tion on trees, which is known to be exact in that case, and
high-capacity MCMC (in particular, Gibbs sampling) with
10000 samples, 5000 burn-in and 100 stride to reduce auto-
correlation.

4. Experimental results
In this section, we first describe experimental data collec-
tion and metrics, then experiments on the baseline model
(Section 4.2), and then report the scalability experiments
results (Section 4.3). We add some more experiments in
the last subsection: these are less extensive, but could be
useful next steps to take in the direction of making scalable
GNN-based inference more accurate.

4.1. Experimental setup

Data collection. We obtain the data by generating a graph
of a specific structure (such as a path or a fully-connected
graph) and size n nodes with weights on edges sampled
independently from N(0, 1); we use the resulting adjacency

Approximate inference with Graph Neural Networks

matrix as the matrix W ∈ Rn nodes×n nodes of pairwise
interactions parameters, and additionally sample a vector
b ∈ Rn nodes of unary interactions from N(0, (14)

2). For
each training task, we use a training set of 1300 graphs, and
for testing (inference), we use 130 graphs.

For large graphs, as the exact inference is not tractable, we
generate training data with MCMC algorithm. For each kind
of graph structures, we generate graphs with 100 nodes.

Hardware. All presented experiments are run on a laptop.

Algorithm settings. All inference algorithms have been im-
plemented by us and are available at https://github.
com/ks-korovina/pgm_graph_inference.

For GNN architecture, we have written a sparse version of
the default settings from (Yoon et al., 2018): the GNN’s
hidden states (D) and messages (P) both have dimension 5,
and both the message passing networkM and the readout
networkR are two-layer MLPs with 64 units each. Training
was run for 10 epochs (T) at learning rate 10−2 using Adam
optimizer. While running BP inference, we use early stop-
ping after 100 iterations or when the `2 distance between
messages is less than 10−20. For MCMC, the number of
burn-in steps is set to 10000, while we provide data of sam-
pling intervals 100 and 200 for comparison of the results.

4.2. Experiments with the baseline model

Since the code of the paper (Yoon et al., 2018) is not re-
leased, the first step is to write the code to reproduce part of
its results. In the in-sample experiments, we see how GNN
generalizes between graphs of the same size and structure;
in out-of-sample experiments, we see how GNN generalizes
to graphs of sizes and structures unseen in training, but still
small enough for exact labelings. We also benchmark and
interpret inference times and provide preliminary results for
the MAP inference task.

In-sample experiment

We compare the methods’ performance on graphs of the
same type and approximately the same size. We choose size
9 as in the paper (Yoon et al., 2018), and vary graph struc-
tures from more to less tree-like. For each test graph G and
its node xi, we plot its exact probability p(xi = +1) on the
x-axis, and inferred probability p̂(xi = +1) on the y-axis.
The resulting scatter plots characterize comparative accu-
racy of different methods (the more concentrated around
the diagonal the better). We note that BP is not exact even
on tree graphs. We thoroughly checked our implementation
and attribute this to accumulation of numerical error.

BP

MCMC

GNN

BarbellRandom TreeLadder Wheel Fully Connected

GNN Generalization:

Larger Graph

GNN Generalization:

Different Graph (FC)

Figure 6. Generalization results for GNN trained on small MRFs

Out-of-sample experiment

For out-of-sample experiments, we focus on two kind of
test samples. The first part is the generalization ability of
GNN on large graphs of the same type. The second last line
of Figure Figure 6 shows the results on ladder, random trees,
barbell, wheel and fully-connected graphs. Comparing the
figures, we observe that performance drastically drops for
more dense graphs, but is still reasonable on trees. However,
in all cases GNN still seems to perform better than BP.

For the second part, we assess GNN’s generalization ability
to unseen structures in training. We use fully-connected
graphs as the training samples, while testing on all kinds of
graphs. The bottom line of Figure 6 shows the results. Com-
paring on these figures, we observe that the performance
drops as the structure of testing graphs differs more from
fully connected graphs. The generalization ability depends
on the similarity between graph strcutures despite density
of graphs.

Here, we compare the convergence of GGNN during train-
ing. See appendix A for other graph structures.

Figure 7. Training KLdiv (per epoch) on path graphs of size 9.

https://github.com/ks-korovina/pgm_graph_inference
https://github.com/ks-korovina/pgm_graph_inference

Approximate inference with Graph Neural Networks

Inference Runtimes

Here, we compare inference times of the methods. Table
1 shows average inference time in seconds per graph. We
see that as graph gets more dense, GNN becomes the fastest
algorithm on inference. For sparser graphs, it loses on
instantiation time (creating and loading the model). Table 2
for larger graphs shows similar results.

sparse GGNN BP MCMC
Path 0.008 0.0037 0.1403
Star 0.0085 0.0015 0.133

Bipart 0.019 0.054 0.272
FC 0.0209 0.1301 0.2356

Table 1. Inference on graphs of size 9 (seconds per graph)

sparse GGNN BP MCMC
Path/star 0.0098 0.0068 0.2797
Bipart/FC 0.0132 0.1537 0.3032

Table 2. Inference on graphs of size 15-17 (seconds per graph)

Training one epoch of Sparse GNN takes ≈ 20 seconds for
1300 training graphs, and between 1 and 10 minutes per
epoch on 1500 graphs of size 100, depending on sparsity
structure of the graphs, since the forward passing for Sparse
GNN is linear in number of edges in the graph.

Map Inference

Figure 8 shows the results of MAP training: GNN exhibits
comparable performance to other methods, while being or-
ders of magnitude faster for dense graphs. As the graph
structure becomes denser (containing more loops), all algo-
rithms perform worse with GNN and MCMC still having
higher MAP accuracy than BP (relative to sparse graph
structure). Also as expected, GNN trained on structures
closer fully connected is able to generalize better to fully
connected. GNN is also able to generalize well to other and
larger graph structures (not shown here).

Figure 8. MAP Accuracy: Train on graph structure in the x-axis
with 9 nodes and test on same graph structure with 9 nodes or
15-17 nodes as well as different graph structure. From left to right,
the graph structure becomes denser, containing more loops.

4.3. Improving scalability

We have seen in section 4.2 that the baseline GNN is able
to somewhat generalize from graphs of 9 to 16 nodes when
the graph structure has been seen in training. We first see
how far can we scale while still training on small graphs,
and then detail on our plans for upcoming experiments.

Upscaling experiments on 25 nodes

In this experiment, we test how large can the inference
graphs be for the baseline method. For testing this out-of-
the-box scalability, we can still need to generate labeled
“large” graphs for testing; this can be either done by exact
enumeration (but only for up to ≈ 25 nodes, as it takes
around 5 minutes per graph at this scale), or by only testing
on trees, for which we can use BP.

Figure 9 shows a GNN model trained on path graphs of size
9. We generate and label only 10 testing graphs of size 25
due to time constraints. We see that in the simplest case
of paths, the model is able to perform well. However, run-
ning this experiment on a fully-connected structure instead
(Figure 10) shows that there is basically no generalization.

Figure 9. Generalization to path graphs of size 25

Figure 10. Generalization to FC graphs of size 25

Upscaling experiments on 100 nodes

We also conduct experiments the 100 nodes with semi-
supervised training and co-training (see Section 3 for de-
tails). Results are shown in fig. 11.

Inference Time

The computing time of inference is also an important ob-
stacle for large graph inference. We compare the per graph
time on 15-17 nodes and 100 nodes on our implementation
of sparse GGNN, belief propagation and MCMC. Results,
shown in table 3 and table 4, demonstrate GNN is much
faster than both BP and (1000-sample) MCMC, except for

Approximate inference with Graph Neural Networks

Random
Tree

Barbell
Graph

Fully
Connected

BP MCMC GNN with MST GNN with LP GNN with Subgraph

Figure 11. Generalization (in-sample) of GNN with approximate
labeling methods vs other inference algorithms

the case of very sparse and small trees, where BP can be
marginally better.

Table 3. Graphs of size 15-17 (sec/graph)
sparse GGNN BP MCMC

Path/star 0.0098 0.0068 0.2797
Bipart/FC 0.0132 0.1537 0.3032

Table 4. Graphs of size 100 (sec/graph)
sparse GGNN BP MCMC

Rand.tree 0.0142 0.0953 1.776
Barb+FC 0.1605 6.594 1.874

4.4. Additional experiments

DIFFERENT LOSS FUNCTION

In the previous experiments, we used reverse KL diver-
gence as our loss function to train both marginals and MAP-
inference. However, in the previous experiments, we ob-
served an interesting artefact: for difficult graph structures,
GNN predictions collapse to (0.5, 0.5). We realized that the
reason for this might be implicit regularization of predictive
distribution:

KL(ppred, ptrue) =
∑

v=−1,1
ppred(v) log(ptrue(v))−∑

v=−1,1
ppred(v) log(ppred(v))

minimizing which encourages higher-entropy ppred. This
regularization doesn’t make much sense in our setting; so
instead, we tried using regular cross-entropy (reverse of the
first KL term above):

CE(ptrue, ppred) =
∑

v=−1,1
ptrue(v) log(ppred(v))

The results (in the case of GNN trained with subgraph label-
ing in Figure 12 and MST labeling in Figure 13) are given
in Figure 12 and Figure 13. They show that the resulting
predictions are still are weakly correlated to approximate
truth for denser structures, but do not collapse to uniform
distribution any more, and for barbells they improve notice-
ably.

Figure 12. Subgraph labeling: random tree, barbell, wheel, fully-
connected

Figure 13. Max subtree labeling: random trees, barbell, wheel,
fully-connected

CURRICULUM LEARNING

Curriculum training (Bengio et al., 2009) is the idea of
designing a specific order of tasks for training the model,
so that it is able to learn faster and generalize better. As
all of labeling, training and inference on tree-like structures
are faster, and generalizing on trees is an easier task, we
could imagine first training the GNN on a larger set of trees
labeled exactly (by BP), and then fine-tuning to a specific
(more difficult) task of generalizing to denser structures.
Unfortunately, on the dense structures that we tried, the
results weren’t anything interesting (we tried adding pre-
training for 5 epochs on random trees, and it almost doesn’t
change the resulting plot), so we won’t add them here and
save properly exploring this idea for future work.

5. Conclusion
In this project, we explored a recently proposed idea for
training graph neural networks to perform approximate in-
ference on graphical models. We focused on the case of
binary MRFs, implemented the gated GNN-based infer-
ence framework, as well as exact and approximate inference
with BP (sparse and non-sparse versions), MCMC (Gibbs

Approximate inference with Graph Neural Networks

sampling), all of which can be used for inference in both
marginals and MAP inference modes on different graph
sizes and structures. We conduct experiments on small
graphs, on which comparing against exact inference is fea-
sible, to evaluate GNN’s ability to generalize within and
across graph sizes and structures. Then we attempt to re-
solve the largest drawback of the framework and evaluate
three proposed approximate labeling methods. We see that
for sparser structures, they are able to achieve some accu-
racy, and that they allow feasible training of GNN, which
runs inference orders of magnitude faster than either BP or
MCMC. We than briefly look at possible ways of improving
accuracy of GNN, which includes changing the loss func-
tion and designing a curriculum procedure for GNN training.
We conclude that although the work we have done is very
preliminary, it can be a promising avenue for future work
on fast and accurate approximate inference.

6. Ongoing work
6.1. Real-world Application on Image Segmentation

To demonstrate the usefulness of GNN as a inference ma-
chine, we plan to take image segmentation problem and us-
ing GNN to replace the inference procedure of CRF. Specifi-
cally, generating labels of fully connected CRF can be done
efficiently via the algorithm in (Krähenbühl & Koltun, 2011).
We train a GNN model using fully connected CRF and tree
CRF with labels, and replace the CRF with trained GNN
to do learning for image segmentation task. By using this
trained GNN, we can use meta-learning technique to learn
a better structure and dependency parameters of CRF. This
can perhaps improve the task performance.

6.2. Information bottleneck

A potential evaluation metric is information bottleneck. Pro-
posed by Tishby & Zaslavsky (2015), information bottle-
neck is the idea that mutual information between the layers
and the input and output variables can give the optimal in-
formation theoretic limits for some networks. Recently, this
technique has been adopted for interpretability by Professor
Xing (Bang et al., 2019).

Acknowledgement
The team thanks their TA Maruan Al-Shedivat for helpful
ideas, discussion and feedback.

References
Bang, S., Xie, P., Wu, W., and Xing, E. Explaining a

black-box using deep variational information bottleneck
approach, 2019.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th An-
nual International Conference on Machine Learning,
ICML ’09, pp. 41–48, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-516-1. doi: 10.1145/1553374.
1553380. URL http://doi.acm.org/10.1145/
1553374.1553380.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-
vre, E. Fast unfolding of communities in large networks.
Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. arXiv preprint arXiv:1704.01212, 2017.

Girvan, M. and Newman, M. E. Community structure in so-
cial and biological networks. Proceedings of the national
academy of sciences, 99(12):7821–7826, 2002.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1024–1034, 2017.

Heess, N., Tarlow, D., and Winn, J. Learning to pass ex-
pectation propagation messages. In Advances in Neural
Information Processing Systems, pp. 3219–3227, 2013.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Koller, D. and Friedman, N. Probabilistic Graphical Models
- Principles and Techniques. MIT Press, 2009.

Krähenbühl, P. and Koltun, V. Efficient inference in fully
connected crfs with gaussian edge potentials. In Advances
in neural information processing systems, pp. 109–117,
2011.

http://doi.acm.org/10.1145/1553374.1553380
http://doi.acm.org/10.1145/1553374.1553380

Approximate inference with Graph Neural Networks

Lin, G., Shen, C., Reid, I., and van den Hengel, A. Deeply
learning the messages in message passing inference. In
Advances in Neural Information Processing Systems, pp.
361–369, 2015.

Newman, M. E. J. Finding community structure in networks
using the eigenvectors of matrices. 2006. doi: 10.1103/
PhysRevE.74.036104.

Pons, P. and Latapy, M. Computing communities in large
networks using random walks (long version), 2005.

Ramakrishna, V., Munoz, D., Hebert, M., Bagnell, J. A.,
and Sheikh, Y. Pose machines: Articulated pose estima-
tion via inference machines. In European Conference on
Computer Vision, pp. 33–47. Springer, 2014.

Reichardt, J. and Bornholdt, S. Statistical mechanics of
community detection. 2006. doi: 10.1103/PhysRevE.74.
016110.

Ross, S., Munoz, D., Hebert, M., and Bagnell, J. A. Learn-
ing message-passing inference machines for structured
prediction. In CVPR 2011, pp. 2737–2744, June 2011.
doi: 10.1109/CVPR.2011.5995724.

Rosvall, M. and Bergstrom, C. T. Maps of random walks
on complex networks reveal community structure. Pro-
ceedings of the National Academy of Sciences, 105(4):
1118–1123, 2008. ISSN 0027-8424. doi: 10.1073/
pnas.0706851105. URL https://www.pnas.org/
content/105/4/1118.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In European Semantic
Web Conference, pp. 593–607. Springer, 2018.

Tishby, N. and Zaslavsky, N. Deep learning and the infor-
mation bottleneck principle, 2015.

Yoon, K., Liao, R., Xiong, Y., Zhang, L., Fetaya, E., Urta-
sun, R., Zemel, R., and Pitkow, X. Inference in proba-
bilistic graphical models by graph neural networks, 2018.

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V.,
Su, Z., Du, D., Huang, C., and Torr, P. H. Conditional
random fields as recurrent neural networks. In Proceed-
ings of the IEEE international conference on computer
vision, pp. 1529–1537, 2015.

A. Convergence Plots

Figure 14. Training KLdiv (per epoch) on {path,star,bipart,fc}
graphs of size 9

https://www.pnas.org/content/105/4/1118
https://www.pnas.org/content/105/4/1118

Approximate inference with Graph Neural Networks

B. Community Detection methods

Table 5. List of community detection algorithms
Algorithm Description
Optimal Modularity Using linear programming,

it is possible to solve a
large integer optimization
problem to find the optimal
community structure.
However, it is very slow,
especially for large graphs.

Girvan–Newman (Girvan
& Newman, 2002)

Detects communities by
progressively removing
edges based on the edge
betweenness.

Walktrap (Pons & Latapy,
2005)

Based on random walks, it
is likely to end up in the
same community after
taking some random steps.

Leading Eigenvector
(Newman, 2006)

Newman’s leading
eigenvector method (from
the graph Laplacian) that
splits the community
structure recursively by
maximizing the modularity
of the starting network.

Spinglass (Reichardt &
Bornholdt, 2006)

Finds the community
structure by interpreting it
as as finding the ground
state of an infinite range
spin glass in condensed
matter physics. In practice,
this requires a lot of
tuning.

Louvain Method (Blondel
et al., 2008)

Bottom-up algorithm that
starts with every vertex
belonging to a separate
community, and merges
them to maximize the
vertices local contribution
to the overall modularity
score.

Infomap (Rosvall &
Bergstrom, 2008)

optimizes the map
equation, which accounts
for flow patterns on the
network (while modularity
maximization approach
does not). Hence, it is
well-suited for
bibliometric networks.

