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Introduction Proposed Method Suite 1: GNN Generalization
Figure: Comparison of different algorithms for in-sample and out-sample generalization
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Suite 2: GNN Scalability (Preliminary)
Figure: Comparison of different labeling methods for graph of size 100
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Factor Graph GNN'’s Graph J on their probabilities, and biases b
Graphs of size 15-17 (sec/graph) Graphs of size 100 (sec/graph)

Path/star 0.0098 0.0068 0.2797 | Rand.tree 0.0142 0.0953 1.776
Bipart/FC 0.0132 0.1537 | 0.3032 | Barb+FC 0.1605 6.594  1.874
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